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Abstract. In phenotyping experiments plants are often germinated in
high numbers, and in a manual transplantation step selected and moved
to single pots. Selection is based on visually derived germination date,
visual size, or health inspection. Such values are often inaccurate, as
evaluating thousands of tiny seedlings is tiring. We address these issues
by quantifying germination detection with an automated, imaging-based
device, and by a visual support system for inspection and transplan-
tation. While this is a great help and reduces the need for visual in-
spection, accuracy of seedling detection is not yet sufficient to allow
skipping the inspection step. We therefore present a new dataset and
challenge containing 19.5k images taken by our germination detection
system and manually verified labels. We describe in detail the involved
automated system and handling setup. As baseline we report the perfor-
mances of the currently applied color-segmentation based algorithm and
of five transfer-learned deep neural networks.

Keywords: Transplantation guidance, high-throughput plant pheno-
typing, automation, Arabidopsis, two leaf stadium

1 Introduction

We present a new dataset and challenge containing 19.5k images taken by an
automated germination detection system and manually verified labels.

A plant’s phenotype is constituted by its traits as reaction to diverse environ-
mental conditions. Plant phenotyping has been identified to be key for progress
in plant breeding and basic plant science [26]. To increase throughput of plant
experiments and overcome the phenotyping bottleneck [10] many automated
technologies have been and are developed. Such systems are often image-based
and image analysis builds a performance bottleneck [17].

When running larger-scale experiments with hundreds of plants in soil, due to
space limitations, it is reasonable to sow seeds in smaller pots until germination
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Fig. 1. Life Cycle of a Plant. In a typical plant phenotyping experiment seeds are
selected and assigned to the experiment, they are sown, plants germinated, seedlings
pricked out and transplanted to bigger pots, and then measured at different stations
with a selection of measurement systems. Some plants are then brought to flowering
to produce seeds, closing the circle.

and transplant them later into larger pots (see Figure 1). We seed into special
multi-well-plates with 576 wells of size 15 mmx 15 mm. They are too small for the
final experiment, but allow for undisturbed germination in soil and, importantly,
undisturbed transplantation of a seedling to its final typically 7cmx7cm pot.
The number of seeds to sow strongly depends on germination rates which can
differ from genotype to genotype. Often the three- to fourfold amount of required
seedlings are sown to ensure enough plants germinate within a given time-frame
needed for synchronisation of treatments in an experiment. For typical medium
to high-throughput experiments several thousand seeds need to be sown.

For larger seedlings, like e.g. Tobacco plants, visual germination detection
and manual selection of seedlings for subsequent experiments is routinely and
reliably done. For tiny seedlings like Arabidopsis, with a typical diameter of 1 mm
to 2mm, it is tiring and frequent errors are unavoidable. However, this inspection
is crucial for subsequent experiments, as seedlings are selected according to the
germination date, size or health and thus it should to be automated to increase
reliability and throughput [14,19,7,20]. Further, without an automated system,
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size and health are just available by visual inspection and after transplantation
no mapping between seedlings’ and plants’ identities is available. However, when
data-handling is intended to cover the whole plant life cycle, plants’ identities
need to be tracked through this process.

We designed and built two systems, allowing for image-based automated ger-
mination detection, support of visual seedling inspection and guided transplan-
tation of seedlings. Imaging for germination detection, or more exactly, detection
of the two leaf stadium, is done by a variant of GrowScreen [27,13]. Further, we
designed a special workplace, a Handling Station, equipped with a camera and
video projector for visual seedling inspection and guided transplantation. The
systems are coupled via a database (see Section 2.1), storing e.g. layout of multi-
well-plates or trays, seed properties and identification number (seed ID) for each
well, germination date and seedling size when detected etc. Germination can be
verified and transplantation automatically documented in the database using the
Handling Station. Both systems are described in detail below (see Section 2.2
and 2.3).

In the workflow individual seeds / seedlings are identified by their location
on the soil-filled tray. The germination detection system automatically measures
relevant seedling data and stores it in a database. The system allows rule-based
selection of seedlings for pricking out and subsequent experiments based on their
measured traits. For visual inspection all selected seedlings on a tray are high-
lighted by the video projector. After validation, the user is guided through trans-
plantation by highlighting only the next single seedling to process. The system
generates an adhesive label indicating among other things the ID and (random-
ized) target position of the newly potted plant. By this a one-to-one mapping
between seedling and newly potted plant is generated in the database. Using
this setup for germination detection and pricking out reduced time and labor,
as well as increased reliability of seedling-to-plant assignment. In addition, the
tedious work of selecting the right plant among hundreds of others is now done
by the system, allowing for faster and less tiring working.

While the two systems significantly increased manual throughput and en-
abled reliable seed to plant tracking, it not yet allows for fully automatic seedling
selection. Especially reliability of two-leaf stage detection is still too low. We aim
at well above 99.8% reliability (i.e. human rater performance), but as we are
not yet there, visual inspection of germination detection results is still needed.
Therefore, image data of the germination detection system together with binary
labels 'positive’, i.e. germinated seedling visible versus 'negative’, i.e. no germi-
nated seedling visible, are provided together with this paper [21]. As a baseline
for further algorithm development on the challenge of predicting binary labels
from images, we provide the performance of a simple color-segmentation based
algorithm (see Section 2.6), as well as five transfer learned deep neural networks
(DNNs). The dataset is described in detail in Section 2.5 and the experiments
for the baseline in Section 3.
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2 Materials and Methods

2.1 Database

Automated plant phenotyping commonly is performed in an environment of spe-
cialized, rarely interconnected systems with highly diverse datasets and custom
analysis tools [22,8,13,18,12]. In lab or greenhouse situations, where potted plants
are monitored over a longer time span, in different situations, and with differ-
ent measurement systems, a wealth of often weakly structured data is collected.
Keeping track of the individual plants in an experiment can then be cumber-
some. Database systems handling individual plants data, e.g. by using unique
IDs for each plant, allow to join such data in a user-friendly and reliable fashion
[22,3].

We use the information system PhenOMIS [22,3], a distributed information
system for phenotyping experiments, and integrated the systems presented here.
PhenOMIS allows to track plant histories by acquiring (and guiding) manual
treatments during activity, covering plants’ whole life cycle (cmp. Figure 1).
The information system allows central access to distributed, heterogeneous phe-
notyping data and integration of spatial, temporal and sensor data. To this end
it loosely couples different components, not integrating all data in one database,
but rather enabling and supporting data co-existence. Web services for encap-
sulation allow to further extend functionality.

Here, seeds are sown into multi-pot trays (Figure 2B) using a robotic system
[12] assigning each seed a unique ID. Seed ID and pot position in the tray
are stored in the database for identification. Subsequent measurements from
germination detection are then assigned to this ID.

2.2 Automated Germination Detection System

Imaging. A variant of the Growscreen Fluoro [13] system is used for automated
germination detection (Figure 2A), fit into a 19”7 rack. It consists of an x-y-
z-moving stage (blue components in Figure 2A), where we mounted a 5MP
RGB color camera (red in Figure 2A) with a 25 mm optical lens, instead of the
fluorescence camera. This offers a spatial resolution of 29.0 pixel/mm. A white
LED ring is used for illumination.

Different plant species need different pot sizes for germination. The current
tray is identified by a bar code, the tray’s layouts read from the database, al-
lowing the system to calculate camera positions for suitable image tiling. The
camera is automatically moved to the calculated positions by x-y-moving stages.
Optimal working distance and thus focus is ensured by the z-moving stage ac-
cording to the known pot height. Scanning a tray takes several seconds to a
few minutes, depending on tray layout. Some sample images are shown in Fig-
ure 2C. They are automatically cropped into images showing one pot each from
the known tray layout. RGB images in the dataset (see Section 2.5) are collected
from this step. Figure 2D top shows a time series of images for one pot.
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Fig. 2. Germination detection. A: Imaging setup. B: A soil-filled tray used for germi-
nation, together with germinated seedlings. C: Acquired images. D: Temporal image
sequence of one pot, showing the first time point when green tissue is visible (left) and
two leaf stage (right).

Processing. In the system, single pot images are segmented into a binary
foreground-background mask using thresholds in HSV-space [27]. Thresholds
are manually optimized once per plant species and stored in the database for
this species, in order to adapt to seedling color and illumination conditions.
Figure 2D bottom shows some segmentation results.

Two points in time need to be derived from the images:

— germination date, defined by the first occurrence of green pixels in the im-
age. To avoid artefacts a size threshold of 10 pixels (0.0119 mm?) is used for
Arabidopsis.

— emergence of separate cotyledons, i.e. two leaf stage. This is where the data
challenge is aiming at.

In the current system, the two leaf stage is detected using the algorithm de-
scribed in Section 2.6. In our plant experiments, we require seedlings to reach
this stage to be suitable for transplantation and subsequent experiments. In ad-
dition, for Arabidopsis thaliana the seedlings are required to have a minimum
leaf diameter of four pixels (0.138 mm) and a projected leaf area larger than
100 pixels (0.119 mm?).

2.3 A Handling Station for Pricking out and Randomization

For visual inspection selected seedlings are highlighted using a video projec-
tor. The same method guides the user through the transplantation process by
highlighting the next single seedling to pique.
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Fig. 3. Visualization of germination results. A: The setup for visual inspection and
transplantation guidance. Inset: Video projector for highlighting. B : Germinated
seedlings highlighted in their pots. C: print out showing the germination dates and
rates for the same tray.

Materials. The handling station consists of a video projector (ViewSonic Pro
8600) and an RGB camera (Point Grey Grashopper GS2-GE-2054C-C) mounted
above a table and aiming towards the table workspace (see Figure 3A). A cutout
in the table allows to keep standard trays in a fixed position (Figure 3B) and
enables single pot access from below for the pricking out process (Figure 4D).

The camera is used to calibrate the projector to the tray. This is done in
two steps. In the first step an image of the table with a tray is acquired. On
this image a user marks the four corners of the tray clockwise by mouse-click.
From these positions and the known tray dimension a homography Hc¢ r is
calculated mapping tray coordinates zp to camera image coordinates x¢. In the
second step five red square markers are projected on the table and imaged by
the camera. Four squares are used as calibration markers, the fifth marks the
projector origin. For the known positions of the markers in the camera as well
as projected image homography Hp ¢ from camera coordinates x¢ to projector
coordinates xp is derived. Combining the two homographies the pixel position
xp in the projector’s plane can be calculated for a given location x7 on the
tray by xp = Hpc - Hor - 7. With the tray layout information available
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Fig. 4. Transplantation and Randomization. A: Tray with four genotypes. B: Graphical
user interface for germination. C: Next seedling to pick. D: Pricking out from below
the table without moving the tray. E: Label with destination. F: 22 target trays for 880
plants with randomized destinations, two genotypes symbolically indicated by arrows.

from the database, size and location of a pot or well in the projector image can
be calculated. For higher accuracy more markers could be used, however the
described procedure enables sufficiently accurate highlighting of single pots.

Visual Inspection. For Visual inspection a tray is set into the cutout and
identified by its ID, triggering highlighting of all seedlings with two or more
leaves (see Figure 3B). Germination detection can be toggled by mouse click
on the respective pot. The toggling event is stored in the database. In case a
non-detected seedling is now marked as being in two-leaves stage the time point
when the mouse click was performed is used as detection date. Overviews and
statistics of the germination dates and rates can be printed and used for further
experiment design (Figure 3C).

2.4 Transplantation Guidance

Seedlings are pricked out and transplanted into bigger pots for subsequent exper-
iments. Which seedlings to pick is decided by selection rules, e.g. medium sized
or the largest seedlings, germinated at a certain day, with the highest growth
rate, or random selection. This improves repeatability of experiments compared
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to visual selection of seedlings. Thus, in a first step for transplantation, a graph-
ical user interface allows selection of trays to calculate statistics like seedling size
distributions (see Figure 4B) and to define selection rules.

We use a randomized plant order on trays to mitigate border and micro-
climate effects. To enable randomization, the desired number of seedlings per
genotype need to be provided together with the layout of destination trays. The
system automatically randomizes seedlings’ target positions over all destination
trays and generates labels for each destination tray, which are printed directly.

Transplantation is done source tray after source tray and plant after plant.
For each plant (i) the system highlights the seedling (Figure 4C) using the pro-
jector, (ii) the user pushes the pot content from below (Figure 4D), and (iii)
transplants the seedling into a bigger pot, prefilled with soil. Simultaneously the
system generates a new plant object in the database, links it to the seed ID,
and prints out the label for the pot in which the seedling is implanted. To sim-
plify randomization, the printed plant label also contains the destination tray
ID and position on that tray (Figure 4E). The user sticks the label to the pot,
waters the seedling and brings the pot to its destination position (Figure 4F).
The destination position printed on the label speeded up the randomization pro-
cess considerably and reduced mistakes. A foot switch (Figure 4A, yellow object
on the floor) is used to step to the next seedling, avoiding dirt on mouse or
keyboard, keeping the users hands free for transplantation.

Besides considerable speedup, improved reliability, and less tiring work due
to user guidance, the system automatically joins results of seedling- and plant
measurements in the database. This is enabled by unique plant and seed identi-
ties and appropriate position tracking of pots during the pricking out process.

2.5 Dataset

By using this system, we collected 19,486 images and initially labelled them with
‘plant’, when one or more healthy seedlings were visible having at least two fully
developed and unfolded leaves, i.e. their cotyledons, or 'no plant’ else. However,
a finer-grained classification may be of interest, when fully automated systems
need to assess germination of seedlings. We therefore relabelled the images by
visual inspection in four 'no plant’ subclasses and four ’plant’ subclasses. The
table in Figure 6 shows the number of images available per class and subclass
and Figure 5 shows example images of the eight subclasses.
The negative 'no plant’ subclasses are:

— class 0 'no plants’: no plant material visible at all

— class 1 'plants with less than two leaves visible’: there is a plant visible, but
it clearly does not have two leaves fully unfolded yet; or larger parts of the
plant are covered by soil.

— class 2 'multiple plants with less than two leaves visible’: same as class 1,
but multiple plants are visible.

— class 3 ’plants with almost two leaves visible’: This class contains the hard
to decide cases, where seedlings are very close to have two fully developed
leaves, but are just not yet there.
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Fig. 5. Example images from each subclass, ordered from left to right. Each column
shows examples from the same subclass.

The positive 'plant’ subclasses are:

— class 4 ’plants with just two leaves’: This class contains the hard to decide
cases, where seedlings have just unfolded their cotyledons. They may be tiny
or by are fully developed.

— class 5 'plants with two leaves’: clear cases of plants in two-leaves stage.

— class 6 'multiple plants with two leaves’: like class 5, but multiple plants
visible.

— class 7 'plants with four leaves’: at least one of the visible seedlings has more
than two leaves.

The cases in subclasses 3 and 4 are the borderline cases of the two main
classes. They are hard to distinguish even for human raters, as the opening
of cotyledons is a gradual process. However, the more accurate the transition
between still closed and already opened cotyledons can be pinpointed, the higher
the temporal resolution possible in an automated system. Currently, imaging
takes place once a day and visual inspection only just before transplantation.

Labelling was done by five human raters. Per image assignments to the dif-
ferent subclasses are represented as normalized probabilities. Their values can
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Fig. 6. Confusion matrix for subclasses as labelled by human raters and number of
images per subclass.

be found in the 'ITmageDescription’ tag of each image, stored in tiff format. A
confusion matrix is shown in Figure 6. For binary ’plant’ (positive) or 'no plant’
(negative) assignment we summed up probabilities of the four respective sub-
classes. An image then was assigned to the ’plant’ or 'no plant’ subclass with the
highest probability. In doubt, the class with lower index was selected. Number
of images per class are also given in Figure 6.

True positive and true negative rates are 99.44% and 99.87%, respectively,
and the overall accuracy for the whole dataset being above 99.77%. The target
performance of an automated solution should therefore be similarly high.

In Figure 5 we observe that cropping of captured images to images of single
pots according to the tray layout does not always yield well centered pots. A
more precise mechanical setup or image-based pot detection and cropping may
help. Please note, that non-perfect pot alignment does not significantly influence
the presented detection task and challenge.

2.6 Algorithm for Detection of Two-Leaves Stadium

Input RGB images are segmented into a binary foreground-background mask
using thresholds in HSV-space [27] (cmp. Section 2.2). On the binary mask a
Euclidean distance map is computed (using openCV [2]), containing distances
between the object pixel and the nearest background pixel. Local maxima in
the distance map are potential leaf center points z;. A maximum value gives
the radius r; of a leaf candidate i, more specifically, the radius r; of the biggest
inscribed circle. Candidates 7 with a radius r; smaller than a predefined, species-
specific threshold (minimal leaf radius) are deleted. The threshold is needed to
delete maxima detected on the petiole. Images with two or more detected leaves
are labelled as 'germinated’. Leaf diameters d; = 2r;, center points x;, detected
projected leaf area (i.e number of foreground pixels) etc. are then assigned to
the seed ID and written to the database.
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3 Experiments

Experiments involve transfer learning [28] of five well established deep neural
networks, namely VGG16 [241], VGG19 [24], DenseNet121 [11], and InceptionV3
[25], where we distinguish two different optimizer configurations for InceptionV3.
The networks have been pre-trained for image classification on ImageNet [(], i.e.
for classification of 1000 different classes of single dominant foreground objects.
Seedling detection can be considered as classification of just two (or eight) other
classes. The selected networks are known to perform well on ImageNet and their
pretrained versions are easily available e.g. in Keras [4].

For all tested architectures, we keep the pretrained feature extraction layers
fixed. The original classifier layers are removed and the simple classifier — dense
layer 256, dropout, dense layer 1 — introduced in [23] is used instead. As optimizer
we either use RMSProp (setup 'A’, with VGG’s and InceptionV3) or Adam with
81 = 0.9 and By = 0.999 (setup 'B’, with DenseNet121 and InceptionV3). Best
batch size, step size and number of epochs are derived by grid search. Training
is done with class weighted cross entropy loss, as usual.

For the challenge, we provide a fixed split of the data into training, validation
and test set in an 80/10/10 split. In order to ensure that each of the sets represent
the same distribution, we perform a 5-fold cross-validation within the grid search.
To this end, we split the data into 5 sets S;,7 € {1,...,5} of approximately same
size. For the i*? validation run, we leave set S; out as validation set and keep the
other 4 sets for training of our baseline transfer learned neural nets. In addition,
we split the 20% validation set into two subsets being validation and test set
candidates for the final split. The grid search results are shown in supplemental
Figures S1-S3. In Figure 7 we show boxplots of the accuracies' and losses of
our five different network configurations, trained using the best values from the
grid search. Shown are results for training as well as 20% validation set and its
split into 10% test and 10% validation subsets. We observe that for all tested
networks all validation values lie close together, respectively, indicating that the
different data splits are equivalent. We provide the split with least deviation
from the average performance. With the resulting 80/10/10 split, we transfer
learned the neural nets, again, where we reinitialized the trainable parameters.
Results are shown in Figure 8 as ’confusion’ wrt. the binary labels, i.e. per
subclass accuracy. The nets achieve accuracies between 96.1% (VGG16) and
98.3% (DenseNet121). We observe, that wrong classification mostly happens in
the hard to decide subclasses 3 and 4, but even for the clear cases in subclasses
0 and 6, 7, accuracies are mostly not 100%.

For comparison we also show the results of our classic detection algorithm
from Section 2.6 and results of human raters. We see that results of the classic
algorithm are excellent in terms of recall (99.8%) at the cost of a lower preci-
sion (71.7%). High recall is preferred by human raters manually cleaning the
data using the handling stations. Overall accuracy is 90.6%. The deep networks

! For definitions of accuracy, precision and recall, please see Section B in the supple-
mental material.
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Fig. 7. Results of cross-validation experiment. Plots show results per net. Top part
shows training results, bottom the results for the 20% validation set and its splits into
two 10% sets. Left: Accuracy. Right: Loss

perform better in terms of accuracy, and may gain from fine-tuning and more
sophisticated classifiers, which we will test in future work. However, available
solutions so far are not yet close to human raters with well above 99.7% accu-
racy. Even the best achieved training accuracy of 99.5% (DenseNet121) is not
yet there. For fully automated germination detection there is still a considerable
gap to fill, which we hope to achieve by challenge results.

4 Conclusions

Fully automated above ground germination detection, i.e. detection of full open-
ing of cotyledons, seems to be well in reach. However, detection reliability is not
yet high enough to allow for fully automated operation. We presented a suitable
imaging-based system, where we hope and believe that image processing can still
be improved. Hence we make our image data and labels freely available and pose
the germination detection problem as a new challenge. We hope that this data
complements other available computer vision challenges in plant phenotyping
[16,15,9,5,1], allowing a further improvement of urgently needed methods [17].
In conjunction with the germination detection system, we presented a han-
dling system supporting manual greenhouse work in plant phenotyping experi-
ments. It not only facilitates visual inspection and transplantation of seedlings,
making such work less tiring, less error-prone, but at the same time increases
throughput even at a reduced human workload. We observed that transplanta-
tion can be done at 15s per plant over hours without slowing down when teams
of two people cooperate. The system was designed along well established green-
house procedures which increased usability and user acceptance. Especially the
avoidance of data to be keyed in during transplantation was very well received.
The system allows for automated, measurement-based seedling selection,
making this process quantifiable and less subjective. Heterogeneous data describ-
ing the plants status is automatically kept consistent with the database during
the transplantation process. This enables reliable tracking of plants from seed to
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Fig. 8. Confusion in the subclasses for the transfer learned nets using the 80/10/10
split. Human raters and the algorithm (see Section 2.6) are evaluated on the whole
dataset.

plant, an experimental option we want to explore in future plant phenotyping
experiments.
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