000889317 001__ 889317
000889317 005__ 20240313103116.0
000889317 0247_ $$2Handle$$a2128/26910
000889317 037__ $$aFZJ-2021-00209
000889317 1001_ $$0P:(DE-Juel1)171408$$aDabrowska, Paulina$$b0$$eCorresponding author
000889317 1112_ $$aNEURONUS 2020 IBRO Neuroscience Forum$$cvirtual$$d2020-12-08 - 2020-12-11$$gNEURONUS2020$$wvirtual
000889317 245__ $$aCharacterization of motor cortex spiking activity for spiking neural network model validation
000889317 260__ $$c2020
000889317 3367_ $$033$$2EndNote$$aConference Paper
000889317 3367_ $$2BibTeX$$aINPROCEEDINGS
000889317 3367_ $$2DRIVER$$aconferenceObject
000889317 3367_ $$2ORCID$$aCONFERENCE_POSTER
000889317 3367_ $$2DataCite$$aOutput Types/Conference Poster
000889317 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1611311132_26190$$xOther
000889317 500__ $$aSince the conference took a virtual format, the posters were presented as 3-min video teasers and live slide presentations (instead of a single-page document).
000889317 520__ $$aTo provide a basis for the validation of balanced spiking neuronal networks and their dynamics, we characterized resting-state (no task) and task-related spiking activity of arm/hand area of macaque (pre-)motor cortex.We recorded spiking activity using a 100-electrode Utah Array (Blackrock Microsystems) during resting-state (REST) and reach-to-grasp (R2G) behavior. In REST, we defined epochs of rest (RS), sleepiness (RSS) and spontaneous movements (M); in R2G: preparatory periods (PP) and task-related movements (TM). Single units were separated into putative excitatory and inhibitory.On the level of single units, we found that ~50% of all units changed their rates significantly with behavioral epochs. Next, we characterized the network activity based on a) the dimensionality which reveals the number of principal components needed to describe the parallel spiking activity, and b) the balance between putative excitatory and inhibitory population firing (absolute difference or instantaneous correlation). RS & PP show the highest dimensionality and the lowest instantaneous balance. Only R2G epochs show a prevalence of excitation (PP) or inhibition (TM), indicating superiority of REST for the validation of balanced network models.Support: DFG SPP1665 DE2175/2-1 & GR1753/4-2; DFG 368482240/GRK2416; EU Grants 720270 & 785907 (HBP).
000889317 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000889317 536__ $$0G:(GEPRIS)238707842$$aDFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)$$c238707842$$x1
000889317 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000889317 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000889317 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x4
000889317 7001_ $$0P:(DE-Juel1)168479$$aVoges, Nicole$$b1
000889317 7001_ $$0P:(DE-Juel1)171972$$avon Papen, Michael$$b2
000889317 7001_ $$0P:(DE-Juel1)144576$$aIto, Junji$$b3
000889317 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b4
000889317 7001_ $$0P:(DE-Juel1)172858$$aRiehle, Alexa$$b5
000889317 7001_ $$0P:(DE-HGF)0$$aBrochier, Thomas$$b6
000889317 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b7
000889317 8564_ $$uhttps://juser.fz-juelich.de/record/889317/files/poster%20presentation.pdf$$yOpenAccess
000889317 8564_ $$uhttps://juser.fz-juelich.de/record/889317/files/poster%20video-teaser.mp4$$yRestricted
000889317 909CO $$ooai:juser.fz-juelich.de:889317$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000889317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171408$$aForschungszentrum Jülich$$b0$$kFZJ
000889317 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171408$$aRWTH Aachen$$b0$$kRWTH
000889317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168479$$aForschungszentrum Jülich$$b1$$kFZJ
000889317 9101_ $$0I:(DE-588b)1043886400$$6P:(DE-Juel1)168479$$aAix-Marseille Université$$b1$$kAMU
000889317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171972$$aForschungszentrum Jülich$$b2$$kFZJ
000889317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144576$$aForschungszentrum Jülich$$b3$$kFZJ
000889317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b4$$kFZJ
000889317 9101_ $$0I:(DE-588b)1043886400$$6P:(DE-Juel1)172858$$aAix-Marseille Université$$b5$$kAMU
000889317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172858$$aForschungszentrum Jülich$$b5$$kFZJ
000889317 9101_ $$0I:(DE-588b)1043886400$$6P:(DE-HGF)0$$aAix-Marseille Université$$b6$$kAMU
000889317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b7$$kFZJ
000889317 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)144168$$aRWTH Aachen$$b7$$kRWTH
000889317 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000889317 9141_ $$y2020
000889317 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889317 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000889317 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000889317 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000889317 9801_ $$aFullTexts
000889317 980__ $$aposter
000889317 980__ $$aVDB
000889317 980__ $$aUNRESTRICTED
000889317 980__ $$aI:(DE-Juel1)INM-6-20090406
000889317 980__ $$aI:(DE-Juel1)IAS-6-20130828
000889317 980__ $$aI:(DE-Juel1)INM-10-20170113
000889317 981__ $$aI:(DE-Juel1)IAS-6-20130828