000889319 001__ 889319
000889319 005__ 20240313103116.0
000889319 0247_ $$2Handle$$a2128/26879
000889319 037__ $$aFZJ-2021-00211
000889319 1001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b0$$eCorresponding author$$ufzj
000889319 1112_ $$aSfN Global Connectome$$cvirtual$$d2021-01-11 - 2021-01-13$$wworldwide
000889319 245__ $$aLong-range coordination patterns in cortex change with behavioral context
000889319 260__ $$c2021
000889319 3367_ $$033$$2EndNote$$aConference Paper
000889319 3367_ $$2BibTeX$$aINPROCEEDINGS
000889319 3367_ $$2DRIVER$$aconferenceObject
000889319 3367_ $$2ORCID$$aCONFERENCE_POSTER
000889319 3367_ $$2DataCite$$aOutput Types/Conference Poster
000889319 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1638853282_11998$$xAfter Call
000889319 520__ $$aThe cerebral cortex is a network of subnetworks that is organized onvarious spatial scales. Understanding how neurons communicate at thedifferent scales is crucial for understanding brain dynamics andfunction. On the microscopic scale the connectivity stems mostly fromlocal axonal arborizations, suggesting coordination is strongestbetween nearby neurons in the range of a few hundred micrometers. Yetrecent studies found activity of neurons across much larger distancesto be organized in manifolds. The emergence of such manifolds relieson complex coordination patterns between neurons. We here analyzemulti-electrode recordings of resting-state activity in macaque motorcortex that indeed show strong positive and negative spike-countcovariances between neurons that are millimeters apart. To understandthe origin of such coordination we develop a conceptually novelnetwork theory that combines the spatial extent and heterogeneity ofthe connectivity with fluctuations of activity treated beyond themean-field approximation. This quantitative theory uncovers a simpleand ubiquitous mechanism that generates long-range correlationpatterns despite short-range connections: the heterogeneity ofconnections causes a dynamical network state that emphasizescooperation of neurons by multi-synaptic interactions. The mechanismdoes not rely on specific connectivity structures, but emerges inspatially organized networks with even random connectivity. The theorynot only explains the experimentally observed shallow exponentialdecay of the width of the covariance distribution at long distances,but also predicts that neuronal coordination patterns can change in astate-dependent manner. We confirm this prediction by comparingactivity in macaque motor cortex across different behavioral epochs ofa reach-to-grasp experiment. Our results explain how spatiallyextended neural manifolds can emerge from the local networkconnectivity.
000889319 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000889319 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000889319 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x2
000889319 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000889319 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x4
000889319 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x5
000889319 7001_ $$0P:(DE-Juel1)174497$$aLayer, Moritz$$b1$$ufzj
000889319 7001_ $$0P:(DE-Juel1)168574$$aDeutz, Lukas$$b2
000889319 7001_ $$0P:(DE-Juel1)171408$$aDabrowska, Paulina$$b3$$ufzj
000889319 7001_ $$0P:(DE-Juel1)168479$$aVoges, Nicole$$b4
000889319 7001_ $$0P:(DE-Juel1)171972$$avon Papen, Michael$$b5
000889319 7001_ $$0P:(DE-HGF)0$$aBrochier, Thomas$$b6
000889319 7001_ $$0P:(DE-Juel1)172858$$aRiehle, Alexa$$b7$$ufzj
000889319 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b8$$ufzj
000889319 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b9$$ufzj
000889319 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b10$$ufzj
000889319 8564_ $$uhttps://juser.fz-juelich.de/record/889319/files/Poster.pdf$$yOpenAccess
000889319 909CO $$ooai:juser.fz-juelich.de:889319$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000889319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b0$$kFZJ
000889319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174497$$aForschungszentrum Jülich$$b1$$kFZJ
000889319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171408$$aForschungszentrum Jülich$$b3$$kFZJ
000889319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172858$$aForschungszentrum Jülich$$b7$$kFZJ
000889319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b8$$kFZJ
000889319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b9$$kFZJ
000889319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b10$$kFZJ
000889319 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000889319 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000889319 9141_ $$y2021
000889319 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889319 920__ $$lyes
000889319 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000889319 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000889319 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000889319 9801_ $$aFullTexts
000889319 980__ $$aposter
000889319 980__ $$aVDB
000889319 980__ $$aI:(DE-Juel1)INM-6-20090406
000889319 980__ $$aI:(DE-Juel1)IAS-6-20130828
000889319 980__ $$aI:(DE-Juel1)INM-10-20170113
000889319 980__ $$aUNRESTRICTED
000889319 981__ $$aI:(DE-Juel1)IAS-6-20130828