001     889319
005     20240313103116.0
024 7 _ |a 2128/26879
|2 Handle
037 _ _ |a FZJ-2021-00211
100 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 0
|e Corresponding author
|u fzj
111 2 _ |a SfN Global Connectome
|c virtual
|d 2021-01-11 - 2021-01-13
|w worldwide
245 _ _ |a Long-range coordination patterns in cortex change with behavioral context
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1638853282_11998
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The cerebral cortex is a network of subnetworks that is organized onvarious spatial scales. Understanding how neurons communicate at thedifferent scales is crucial for understanding brain dynamics andfunction. On the microscopic scale the connectivity stems mostly fromlocal axonal arborizations, suggesting coordination is strongestbetween nearby neurons in the range of a few hundred micrometers. Yetrecent studies found activity of neurons across much larger distancesto be organized in manifolds. The emergence of such manifolds relieson complex coordination patterns between neurons. We here analyzemulti-electrode recordings of resting-state activity in macaque motorcortex that indeed show strong positive and negative spike-countcovariances between neurons that are millimeters apart. To understandthe origin of such coordination we develop a conceptually novelnetwork theory that combines the spatial extent and heterogeneity ofthe connectivity with fluctuations of activity treated beyond themean-field approximation. This quantitative theory uncovers a simpleand ubiquitous mechanism that generates long-range correlationpatterns despite short-range connections: the heterogeneity ofconnections causes a dynamical network state that emphasizescooperation of neurons by multi-synaptic interactions. The mechanismdoes not rely on specific connectivity structures, but emerges inspatially organized networks with even random connectivity. The theorynot only explains the experimentally observed shallow exponentialdecay of the width of the covariance distribution at long distances,but also predicts that neuronal coordination patterns can change in astate-dependent manner. We confirm this prediction by comparingactivity in macaque motor cortex across different behavioral epochs ofa reach-to-grasp experiment. Our results explain how spatiallyextended neural manifolds can emerge from the local networkconnectivity.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|x 0
|f POF IV
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|x 1
|f POF IV
536 _ _ |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)
|0 G:(DE-Juel1)HGF-SMHB-2014-2018
|c HGF-SMHB-2014-2018
|x 2
|f MSNN
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 3
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 4
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 5
|f H2020-SGA-FETFLAG-HBP-2019
700 1 _ |a Layer, Moritz
|0 P:(DE-Juel1)174497
|b 1
|u fzj
700 1 _ |a Deutz, Lukas
|0 P:(DE-Juel1)168574
|b 2
700 1 _ |a Dabrowska, Paulina
|0 P:(DE-Juel1)171408
|b 3
|u fzj
700 1 _ |a Voges, Nicole
|0 P:(DE-Juel1)168479
|b 4
700 1 _ |a von Papen, Michael
|0 P:(DE-Juel1)171972
|b 5
700 1 _ |a Brochier, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Riehle, Alexa
|0 P:(DE-Juel1)172858
|b 7
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 8
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 9
|u fzj
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 10
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/889319/files/Poster.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889319
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174497
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171408
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172858
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21