
Long-range coordination patterns in cortex change with behavioral context
David Dahmen1,†, Moritz Layer1,2, Lukas Deutz3, Paulina Anna Dąbrowska1,2, Nicole Voges1,4, Michael von Papen1, Thomas Brochier4, Alexa Riehle4,
Markus Diesmann1,5,7, Sonja Grün1,6, Moritz Helias1,7

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany; 2 RWTH Aachen University, Aachen,

Germany; 3 Institute for Artificial and Biological Computation, School of Computing, University of Leeds, Leeds, United Kingdom; 4 Institut de Neurosciences de la Timone (INT), CNRS - Aix-Marseille University, Marseille, France; 5 Department of

Psychiatry, Psychotherapy and Psychosomatics, Faculty 10, RWTH Aachen University, Aachen, Germany; 6 Theoretical Systems Neurobiology, Faculty 1, RWTH Aachen University, Aachen, Germany; 7 Department of Physics, Faculty 1, RWTH

Aachen University, Aachen, Germany; † Contact: d.dahmen@fz-juelich.de

preprint:
P385.01

Question

•Neural networks within a cortical area comprise a large number of neurons that mostly form short-
range connections [1].

•Yet, neural activity is found to be confined to low-dimensional manifolds [2]
which requires strong coordination also between distant neurons that are most likely unconnected.

→Which dynamical mechanism causes such long-range neural coordination patterns?

Answer

Using tools from statistical physics of disordered systems [3,4,5,6,7], we show that networks can
operate in a “dynamically balanced critical state”, where pairs of neurons interact via a multitude of
parallel paths through the network, giving rise to long-range covariances between individual neurons
despite short-range connections [8]. This mechanism for long-range cooperation is not imprinted in
specific connectivity structures but can change over time in a state-dependent manner, which we
demonstrate in macaque motor cortex.
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Experimental Observations: macaque motor cortex activity during rest and a reach-to-grasp task

Setup

• 10 × 10 Utah electrode array in
macaque motor cortex (4× 4mm2)

•Resting state (RS) and reach-to-
grasp task (R2G) [9]

• Spike sorting into putative excitatory
(E) and inhibitory (I) neurons

•Binning of spike trains
(RS: 1 s, R2G: 200 ms)

→ Spike-count covariances:

cij = 〈ninj〉 − 〈ni〉 〈nj〉

What is the spatial organization of spike-count covariances
on the Utah array?

Highly disperse covariances across mesoscopic distances
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Which mechanisms give rise to the large dispersion of covariances?
Does the long-range coordination rely on long-range connections?

Covariances are:

• low on average

• large (negative and positive)
for individual neuron pairs
(across all distances)

Exponential decay of width of
covariance distribution with de-
cay constants:

•much larger (millimeter scale)
than the range of direct con-
nections (∼ 300 microns [1])

• similar across neuron types

Coordination patterns change with behavioral context
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• Firing rates and covariances have overall similar statistics but largely differ
on the individual neuron level (corr. coeffs.: ρ = 0.69 and ρ = 0.4)

How are changes in firing rates and covariances related?

Theory and Simulation: balanced random network model with short-range connectivity

•Hypothesis: short-range (length scale d), random connectivity suffi-
cient to explain experimental observations

• Linear response theory [10,11,12] relates spike-count covariances to
the effective connectivity W : c = [1−W ]−1

D [1−W ]−T

There is a critical regime [7], where the maximum
eigenvalue (spectral bound) R = max(Re(λ)) / 1

Interactions via indirect connections

ij

ij ?
n=3

n=2

n=1

•Neuronal interactions are not only mediated via direct connections,
but also via indirect paths: [1−W ]−1 =

∑∞
n=0W

n

→ larger reach and superposition of contributions from excitatory and
inhibitory neurons

In the critical regime, covariances are dominated by
multi-synaptic interactions

Decay of covariances depends on spectral bound

•Beyond mean-field theory for spatially organized random E-I networks:

→ exponential decay of variance of covariances on length scale deff, de-
termined by spectral bound deff/d ∼

√

R2/(1−R2) + const.

Length scale of covariances diverges at critical point R → 1

Covariance patterns depend on effective connectivity of
network states

•Anatomical connections + firing rates → effective connections

→ Effective connectivity is dynamic ⇒ covariance patterns are dynamic

In the critical regime, small changes in firing rates induce large
changes in covariances
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