000889321 001__ 889321 000889321 005__ 20240313094932.0 000889321 037__ $$aFZJ-2021-00213 000889321 1001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b0$$eCorresponding author$$ufzj 000889321 1112_ $$cHeidelberg$$wGermany 000889321 245__ $$aCorrelations, chaos, and criticality in neural networks$$f2020-11-06 - 000889321 260__ $$c2020 000889321 3367_ $$033$$2EndNote$$aConference Paper 000889321 3367_ $$2DataCite$$aOther 000889321 3367_ $$2BibTeX$$aINPROCEEDINGS 000889321 3367_ $$2ORCID$$aLECTURE_SPEECH 000889321 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1636121422_4632$$xInvited 000889321 3367_ $$2DINI$$aOther 000889321 520__ $$aCorrelations, chaos, and criticality in neural networksMoritz HeliasINM-6 Juelich Research CentreTheory of condensed matter physicsRWTH AachenThe remarkable properties of information-processing of biological andof artificial neuronal networks alike arise from the interaction oflarge numbers of neurons. A central quest is thus to characterizetheir collective states. The directed coupling between pairs ofneurons and their continuous dissipation of energy, moreover, causedynamics of neuronal networks outside thermodynamic equilibrium.Tools from non-equilibrium statistical mechanics and field theory arethus instrumental to obtain a quantitative understanding. We herepresent progress with this recent approach [1].On the experimental side, we show how correlations betweenpairs of neurons are informative on the dynamics ofcortical networks: they are poised near a transition to chaos [2].Close to this transition, we find prolongued sequential memoryfor past signals [3]. In the chaotic regime, networks offerrepresentations of information whose dimensionality expands with time.We show how this mechanism aids classification performance [3].Together these works illustrate the fruitful interplay betweentheoretical physics, neuronal networks, and neural informationprocessing.1. Helias, Dahmen (2020) Statistical field theory for neural networks.Springer lecture notes in physics.2. Dahmen D, Grün S, Diesmann M, Helias M (2019). Second type of criticality in the brain uncovers rich multiple-neuron dynamics. PNAS 116 (26) 13051-130603. Schuecker J, Goedeke S, Helias M (2018). Optimal sequence memory in driven random networks. Phys Rev X 8, 0410294. Keup, Kuehn, Dahmen, Helias (2020) Transient chaotic dimensionality expansion by recurrent networks. arXiv:2002.11006 [cond-mat.dis-nn] 000889321 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0 000889321 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1 000889321 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x2 000889321 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x3 000889321 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x4 000889321 909CO $$ooai:juser.fz-juelich.de:889321$$pVDB 000889321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b0$$kFZJ 000889321 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0 000889321 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1 000889321 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0 000889321 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1 000889321 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x2 000889321 9141_ $$y2021 000889321 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0 000889321 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1 000889321 980__ $$atalk 000889321 980__ $$aVDB 000889321 980__ $$aI:(DE-Juel1)INM-6-20090406 000889321 980__ $$aI:(DE-Juel1)IAS-6-20130828 000889321 980__ $$aUNRESTRICTED 000889321 981__ $$aI:(DE-Juel1)IAS-6-20130828