000889332 001__ 889332
000889332 005__ 20240313103116.0
000889332 0247_ $$2Handle$$a2128/26881
000889332 037__ $$aFZJ-2021-00223
000889332 1001_ $$0P:(DE-Juel1)174585$$aNestler, Sandra$$b0$$eCorresponding author$$ufzj
000889332 1112_ $$a34th Conference on Neural Information Processing Systems$$conline$$d2020-12-06 - 2020-12-12$$gNeurIPS 2020$$wonline
000889332 245__ $$aUnfolding recurrence by Green’s functions for optimized reservoir computing
000889332 260__ $$c2020
000889332 300__ $$a1
000889332 3367_ $$2ORCID$$aCONFERENCE_PAPER
000889332 3367_ $$033$$2EndNote$$aConference Paper
000889332 3367_ $$2BibTeX$$aINPROCEEDINGS
000889332 3367_ $$2DRIVER$$aconferenceObject
000889332 3367_ $$2DataCite$$aOutput Types/Conference Paper
000889332 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1676464587_10239
000889332 520__ $$aCortical networks are strongly recurrent, and neurons have intrinsic temporaldynamics. This sets them apart from deep feed-forward networks. Despite thetremendous progress in the application of feed-forward networks and their the-oretical understanding, it remains unclear how the interplay of recurrence andnon-linearities in recurrent cortical networks contributes to their function. Thepurpose of this work is to present a solvable recurrent network model that links tofeed forward networks. By perturbative methods we transform the time-continuous,recurrent dynamics into an effective feed-forward structure of linear and non-lineartemporal kernels. The resulting analytical expressions allow us to build optimaltime-series classifiers from random reservoir networks. Firstly, this allows us tooptimize not only the readout vectors, but also the input projection, demonstratinga strong potential performance gain. Secondly, the analysis exposes how the secondorder stimulus statistics is a crucial element that interacts with the non-linearity ofthe dynamics and boosts performance.
000889332 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000889332 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000889332 536__ $$0G:(DE-82)EXS-SF-neuroIC002$$aneuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002)$$cEXS-SF-neuroIC002$$x2
000889332 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x3
000889332 536__ $$0G:(DE-Juel-1)BMBF-01IS19077A$$aRenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)$$cBMBF-01IS19077A$$x4
000889332 536__ $$0G:(DE-Juel-1)PF-JARA-SDS005$$aSDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005)$$cPF-JARA-SDS005$$x5
000889332 7001_ $$0P:(DE-Juel1)171384$$aKeup, Christian$$b1$$ufzj
000889332 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b2$$ufzj
000889332 7001_ $$0P:(DE-Juel1)184621$$aGilson, Matthieu$$b3$$ufzj
000889332 7001_ $$0P:(DE-HGF)0$$aRauhut, Holger$$b4
000889332 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b5$$ufzj
000889332 8564_ $$uhttps://juser.fz-juelich.de/record/889332/files/neurips_accepted.pdf$$yOpenAccess
000889332 909CO $$ooai:juser.fz-juelich.de:889332$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000889332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174585$$aForschungszentrum Jülich$$b0$$kFZJ
000889332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171384$$aForschungszentrum Jülich$$b1$$kFZJ
000889332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b2$$kFZJ
000889332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184621$$aForschungszentrum Jülich$$b3$$kFZJ
000889332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b5$$kFZJ
000889332 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000889332 9141_ $$y2020
000889332 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889332 920__ $$lyes
000889332 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000889332 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000889332 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000889332 9801_ $$aFullTexts
000889332 980__ $$acontrib
000889332 980__ $$aVDB
000889332 980__ $$aI:(DE-Juel1)INM-6-20090406
000889332 980__ $$aI:(DE-Juel1)IAS-6-20130828
000889332 980__ $$aI:(DE-Juel1)INM-10-20170113
000889332 980__ $$aUNRESTRICTED
000889332 981__ $$aI:(DE-Juel1)IAS-6-20130828