001     889332
005     20240313103116.0
024 7 _ |a 2128/26881
|2 Handle
037 _ _ |a FZJ-2021-00223
100 1 _ |a Nestler, Sandra
|0 P:(DE-Juel1)174585
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 34th Conference on Neural Information Processing Systems
|g NeurIPS 2020
|c online
|d 2020-12-06 - 2020-12-12
|w online
245 _ _ |a Unfolding recurrence by Green’s functions for optimized reservoir computing
260 _ _ |c 2020
300 _ _ |a 1
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1676464587_10239
|2 PUB:(DE-HGF)
520 _ _ |a Cortical networks are strongly recurrent, and neurons have intrinsic temporaldynamics. This sets them apart from deep feed-forward networks. Despite thetremendous progress in the application of feed-forward networks and their the-oretical understanding, it remains unclear how the interplay of recurrence andnon-linearities in recurrent cortical networks contributes to their function. Thepurpose of this work is to present a solvable recurrent network model that links tofeed forward networks. By perturbative methods we transform the time-continuous,recurrent dynamics into an effective feed-forward structure of linear and non-lineartemporal kernels. The resulting analytical expressions allow us to build optimaltime-series classifiers from random reservoir networks. Firstly, this allows us tooptimize not only the readout vectors, but also the input projection, demonstratinga strong potential performance gain. Secondly, the analysis exposes how the secondorder stimulus statistics is a crucial element that interacts with the non-linearity ofthe dynamics and boosts performance.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002)
|0 G:(DE-82)EXS-SF-neuroIC002
|c EXS-SF-neuroIC002
|x 2
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|f Advanced Computing Architectures
|x 3
536 _ _ |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)
|0 G:(DE-Juel-1)BMBF-01IS19077A
|c BMBF-01IS19077A
|x 4
536 _ _ |a SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005)
|0 G:(DE-Juel-1)PF-JARA-SDS005
|c PF-JARA-SDS005
|x 5
700 1 _ |a Keup, Christian
|0 P:(DE-Juel1)171384
|b 1
|u fzj
700 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 2
|u fzj
700 1 _ |a Gilson, Matthieu
|0 P:(DE-Juel1)184621
|b 3
|u fzj
700 1 _ |a Rauhut, Holger
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 5
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/889332/files/neurips_accepted.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889332
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174585
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171384
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184621
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21