Home > Publications database > Perovskite modules with 99% geometrical fill factor using point contact interconnections design > print |
001 | 889334 | ||
005 | 20240712084514.0 | ||
024 | 7 | _ | |a 10.1002/pip.3312 |2 doi |
024 | 7 | _ | |a 1062-7995 |2 ISSN |
024 | 7 | _ | |a 1099-159X |2 ISSN |
024 | 7 | _ | |a 2128/26981 |2 Handle |
024 | 7 | _ | |a WOS:000561888500001 |2 WOS |
037 | _ | _ | |a FZJ-2021-00225 |
082 | _ | _ | |a 690 |
100 | 1 | _ | |a Rakocevic, Lucija |0 0000-0002-1590-0357 |b 0 |e Corresponding author |
245 | _ | _ | |a Perovskite modules with 99% geometrical fill factor using point contact interconnections design |
260 | _ | _ | |a Chichester |c 2020 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1611418149_28209 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Thin‐film photovoltaic technology, based on hybrid metal halide perovskites, has achieved 25.2% and 16.1% certified power conversion efficiencies for solar cell and solar module devices, respectively. Still, the gap between power conversion efficiency of small area solar cells and large area solar modules is greater than for any other photovoltaic technology. Analysis of loss mechanisms in n‐i‐p solution processed devices defined layer inhomogeneity loss and inactive area loss as the two most prominent loss mechanisms in upscaling. In this study, we focus on minimizing inactive area loss. We analyze the point contact interconnections design and demonstrate it on perovskite thin‐film solar modules to achieve a geometrical fill factor of up to 99%. Numerical and analytical simulations are utilized to optimize interconnections and solar module design and balance inactive area loss, series resistance loss, and contact resistance loss. |
536 | _ | _ | |a 121 - Solar cells of the next generation (POF3-121) |0 G:(DE-HGF)POF3-121 |c POF3-121 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Schöpe, Gunnar |0 P:(DE-Juel1)130294 |b 1 |
700 | 1 | _ | |a Turan, Bugra |0 P:(DE-Juel1)145058 |b 2 |
700 | 1 | _ | |a Genoe, Jan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Aernouts, Tom |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Haas, Stefan |0 P:(DE-Juel1)130246 |b 5 |
700 | 1 | _ | |a Gehlhaar, Robert |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Poortmans, Jef |0 P:(DE-HGF)0 |b 7 |
773 | _ | _ | |a 10.1002/pip.3312 |g Vol. 28, no. 11, p. 1120 - 1127 |0 PERI:(DE-600)2023295-0 |n 11 |p 1120 - 1127 |t Progress in photovoltaics |v 28 |y 2020 |x 1099-159X |
856 | 4 | _ | |y Published on 2020-08-19. Available in OpenAccess from 2021-08-19. |z StatID:(DE-HGF)0510 |u https://juser.fz-juelich.de/record/889334/files/PointContactLR%2020200608%20clean.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/889334/files/pip.3312.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:889334 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130294 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130246 |
913 | 1 | _ | |a DE-HGF |b Energie |l Erneuerbare Energien |1 G:(DE-HGF)POF3-120 |0 G:(DE-HGF)POF3-121 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Solar cells of the next generation |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-09-04 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PROG PHOTOVOLTAICS : 2018 |d 2020-09-04 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PROG PHOTOVOLTAICS : 2018 |d 2020-09-04 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-09-04 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-04 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|