000889338 001__ 889338
000889338 005__ 20210127115326.0
000889338 0247_ $$2doi$$a10.1002/aisy.202070100
000889338 0247_ $$2Handle$$a2128/26778
000889338 037__ $$aFZJ-2021-00229
000889338 082__ $$a620
000889338 1001_ $$0P:(DE-Juel1)177689$$aZiegler, Tobias$$b0
000889338 245__ $$aIn‐Memory Binary Vector–Matrix Multiplication Based on Complementary Resistive Switches
000889338 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co. KGaA$$c2020
000889338 3367_ $$2DRIVER$$aarticle
000889338 3367_ $$2DataCite$$aOutput Types/Journal article
000889338 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610561444_30208
000889338 3367_ $$2BibTeX$$aARTICLE
000889338 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889338 3367_ $$00$$2EndNote$$aJournal Article
000889338 500__ $$aCover Picture
000889338 520__ $$aIn article number 2000134, Stephan Menzel and co‐workers explore a computation in‐memory concept for binary vector‐matrix multiplications based on complementary resistive switches. Experimental results on a small‐scale demonstrator are shown and the influence of device variability is investigated. The simulated inference of a 1‐layer fully connected binary neural network trained on the MNIST data set resulted in an accuracy of nearly 86%.
000889338 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000889338 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x1
000889338 588__ $$aDataset connected to CrossRef
000889338 7001_ $$00000-0002-5426-9967$$aWaser, Rainer$$b1
000889338 7001_ $$00000-0002-6766-8553$$aWouters, Dirk J.$$b2
000889338 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b3$$eCorresponding author
000889338 773__ $$0PERI:(DE-600)2975566-9$$a10.1002/aisy.202070100$$gVol. 2, no. 10, p. 2070100 -$$n10$$p2070100 -$$tAdvanced intelligent systems$$v2$$x2640-4567$$y2020
000889338 8564_ $$uhttps://juser.fz-juelich.de/record/889338/files/aisy.202070100.pdf$$yOpenAccess
000889338 909CO $$ooai:juser.fz-juelich.de:889338$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177689$$aForschungszentrum Jülich$$b0$$kFZJ
000889338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b3$$kFZJ
000889338 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000889338 9141_ $$y2020
000889338 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000889338 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-12
000889338 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-12
000889338 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889338 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-12
000889338 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-12
000889338 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000889338 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-12
000889338 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000889338 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000889338 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000889338 980__ $$ajournal
000889338 980__ $$aVDB
000889338 980__ $$aUNRESTRICTED
000889338 980__ $$aI:(DE-Juel1)PGI-7-20110106
000889338 980__ $$aI:(DE-Juel1)PGI-10-20170113
000889338 980__ $$aI:(DE-82)080009_20140620
000889338 9801_ $$aFullTexts