Home > Publications database > In‐Memory Binary Vector–Matrix Multiplication Based on Complementary Resistive Switches > print |
001 | 889338 | ||
005 | 20210127115326.0 | ||
024 | 7 | _ | |a 10.1002/aisy.202070100 |2 doi |
024 | 7 | _ | |a 2128/26778 |2 Handle |
037 | _ | _ | |a FZJ-2021-00229 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Ziegler, Tobias |0 P:(DE-Juel1)177689 |b 0 |
245 | _ | _ | |a In‐Memory Binary Vector–Matrix Multiplication Based on Complementary Resistive Switches |
260 | _ | _ | |a Weinheim |c 2020 |b Wiley-VCH Verlag GmbH & Co. KGaA |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1610561444_30208 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Cover Picture |
520 | _ | _ | |a In article number 2000134, Stephan Menzel and co‐workers explore a computation in‐memory concept for binary vector‐matrix multiplications based on complementary resistive switches. Experimental results on a small‐scale demonstrator are shown and the influence of device variability is investigated. The simulated inference of a 1‐layer fully connected binary neural network trained on the MNIST data set resulted in an accuracy of nearly 86%. |
536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 0 |
536 | _ | _ | |a Advanced Computing Architectures (aca_20190115) |0 G:(DE-Juel1)aca_20190115 |c aca_20190115 |f Advanced Computing Architectures |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Waser, Rainer |0 0000-0002-5426-9967 |b 1 |
700 | 1 | _ | |a Wouters, Dirk J. |0 0000-0002-6766-8553 |b 2 |
700 | 1 | _ | |a Menzel, Stephan |0 P:(DE-Juel1)158062 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.1002/aisy.202070100 |g Vol. 2, no. 10, p. 2070100 - |0 PERI:(DE-600)2975566-9 |n 10 |p 2070100 - |t Advanced intelligent systems |v 2 |y 2020 |x 2640-4567 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/889338/files/aisy.202070100.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:889338 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177689 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)158062 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Controlling Collective States |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-09-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-09-12 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2020-09-12 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-09-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-12 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-09-12 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|