001     889347
005     20211025141311.0
024 7 _ |a 10.1016/j.agrformet.2020.108289
|2 doi
024 7 _ |a 0168-1923
|2 ISSN
024 7 _ |a 1873-2240
|2 ISSN
024 7 _ |a 2128/26785
|2 Handle
024 7 _ |a altmetric:97518502
|2 altmetric
024 7 _ |a WOS:000610797100011
|2 WOS
037 _ _ |a FZJ-2021-00236
082 _ _ |a 550
100 1 _ |a Wallach, Daniel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Multi-model evaluation of phenology prediction for wheat in Australia
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1635151257_28701
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Predicting wheat phenology is important for cultivar selection, for effective crop management and provides a baseline for evaluating the effects of global change. Evaluating how well crop phenology can be predicted is therefore of major interest. Twenty-eight wheat modeling groups participated in this evaluation. Our target population was wheat fields in the major wheat growing regions of Australia under current climatic conditions and with current local management practices. The environments used for calibration and for evaluation were both sampled from this same target population. The calibration and evaluation environments had neither sites nor years in common, so this is a rigorous evaluation of the ability of modeling groups to predict phenology for new sites and weather conditions. Mean absolute error (MAE) for the evaluation environments, averaged over predictions of three phenological stages and over modeling groups, was 9 days, with a range from 6 to 20 days. Predictions using the multi-modeling group mean and median had prediction errors nearly as small as the best modeling group. About two thirds of the modeling groups performed better than a simple but relevant benchmark, which predicts phenology by assuming a constant temperature sum for each development stage. The added complexity of crop models beyond just the effect of temperature was thus justified in most cases. There was substantial variability between modeling groups using the same model structure, which implies that model improvement could be achieved not only by improving model structure, but also by improving parameter values, and in particular by improving calibration techniques.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Palosuo, Taru
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Thorburn, Peter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hochman, Zvi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Andrianasolo, Fety
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Asseng, Senthold
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Basso, Bruno
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Buis, Samuel
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Crout, Neil
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dumont, Benjamin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ferrise, Roberto
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gaiser, Thomas
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gayler, Sebastian
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Hiremath, Santosh
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Hoek, Steven
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Horan, Heidi
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Hoogenboom, Gerrit
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Huang, Mingxia
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Jabloun, Mohamed
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Jansson, Per-Erik
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Jing, Qi
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Justes, Eric
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Kersebaum, Kurt Christian
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Launay, Marie
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Lewan, Elisabet
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Luo, Qunying
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Maestrini, Bernardo
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Moriondo, Marco
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Olesen, Jørgen Eivind
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Padovan, Gloria
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Poyda, Arne
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Priesack, Eckart
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Pullens, Johannes Wilhelmus Maria
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Qian, Budong
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Schütze, Niels
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Shelia, Vakhtang
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Souissi, Amir
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Specka, Xenia
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Kumar Srivastava, Amit
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Stella, Tommaso
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Streck, Thilo
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Trombi, Giacomo
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Wallor, Evelyn
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Wang, Jing
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Weber, Tobias K. D.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Weihermüller, Lutz
|0 P:(DE-Juel1)129553
|b 45
700 1 _ |a de Wit, Allard
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Wöhling, Thomas
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Xiao, Liujun
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Zhao, Chuang
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Zhu, Yan
|0 P:(DE-Juel1)156394
|b 50
700 1 _ |a Seidel, Sabine J
|0 P:(DE-HGF)0
|b 51
773 _ _ |a 10.1016/j.agrformet.2020.108289
|g Vol. 298-299, p. 108289 -
|0 PERI:(DE-600)2012165-9
|p 108289 -
|t Agricultural and forest meteorology
|v 298-299
|y 2021
|x 0168-1923
856 4 _ |u https://juser.fz-juelich.de/record/889347/files/BioRXiv_2020_708578v3.full.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889347
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 45
|6 P:(DE-Juel1)129553
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AGR FOREST METEOROL : 2018
|d 2020-09-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21