

Spiking Simulation Models and Tools

A brief overview over the HBP/EBRAINS tools around spiking neural network simulations with point-neuron resolution

by many contributors and Dennis Terhorst

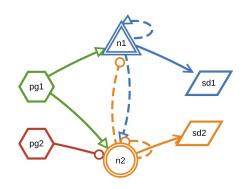
SfN Global Connectome 2021-01-12

Network Level Spiking Simulations EBRAINS Context

neuron models

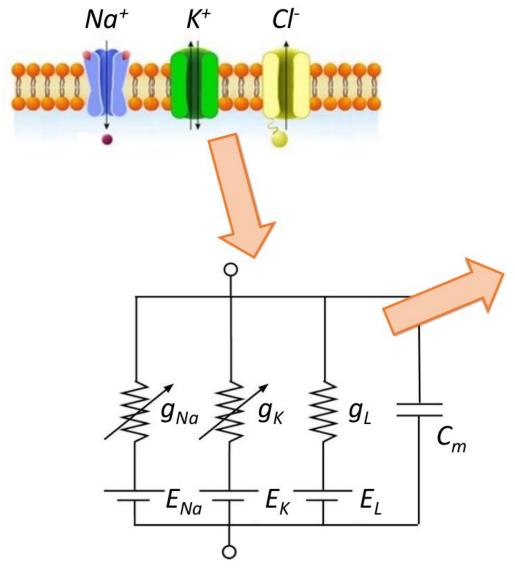
synapse models

connectivity


simulation

analysis & validation

$$C_m \frac{dV}{dt} = -g_L(V - E_L) + g_L \Delta_T \exp\left(\frac{V - V_{th}}{\Delta_T}\right) - g_e(t)(V - E_e)$$
$$-g_i(t)(V - E_i) - w + I_e$$

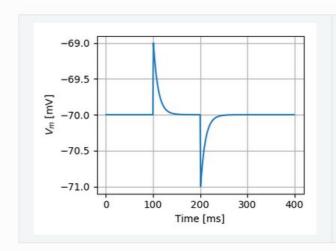


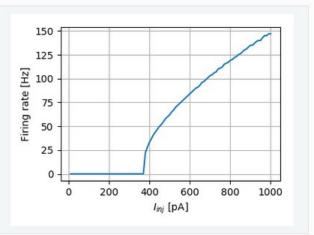
NESTML is a domain-specific modeling language for the dynamical simulation of

- point neurons (spiking and rate-based), as well as
- synapses and
- synaptic plasticity rules (in alpha version).
- Low on boilerplate; concise yet expressive syntax
- Direct language support for dynamical equations
- Imperative programming style specification of event
- handling and generation


```
neuron hodgkin huxley:
  state:
    V m mV = -65 mV
    Act m, Act n, Inact h ...
  end
  equations:
    shape syn psc kernel = exp(-t / tau syn)
    function I Na pA = g Na * Act m**3 * Inact h * (V m - E Na)
    function I_K pA = ...
    function I_L pA = g_L * (V_m - E_L)
    V_m' = -(I_Na + I_K + I_L) / C_m
           + convolve(syn_psc_kernel, spikes)
    Act_n' = (alpha_n * (1 - Act_n) - beta_n * Act_n) / ms
    Act m' = \dots
    Inact h' = ...
  end
  parameters:
    C m pF = 250 pF
    V threshold mV = 40 mV
  end
  update:
    integrate odes()
    if V m >= V threshold:
      emit spike()
    end
  end
end
```

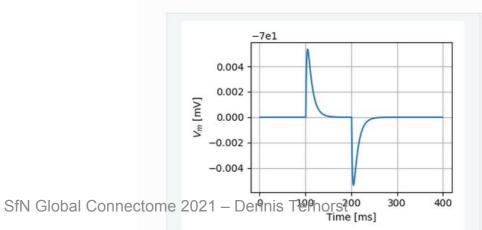

NESTML software development uses best practices in software engineering.

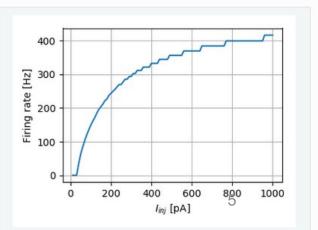

- Unit tests: language feature tests; physical units consistency; etc.
- Integration tests: models are behaviorally validated in one or more simulation runs
- Extensive documentation and automated HTML documentation generation for models: https://nestml.readthedocs.org/
- Open development: <u>https://github.com/nest/nestml</u>
- GNU GPL v2.0 licensed


Models library

iaf_psc_delta

Source file: iaf_psc_delta.nestml





iaf_psc_exp

Source file: iaf_psc_exp.nestml

Network Level Spiking Simulations EBRAINS Context

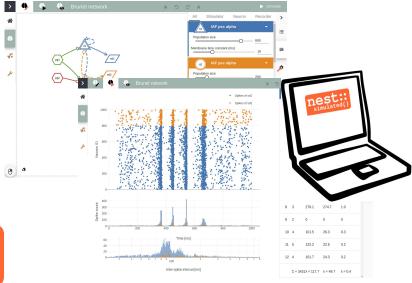
neuron models

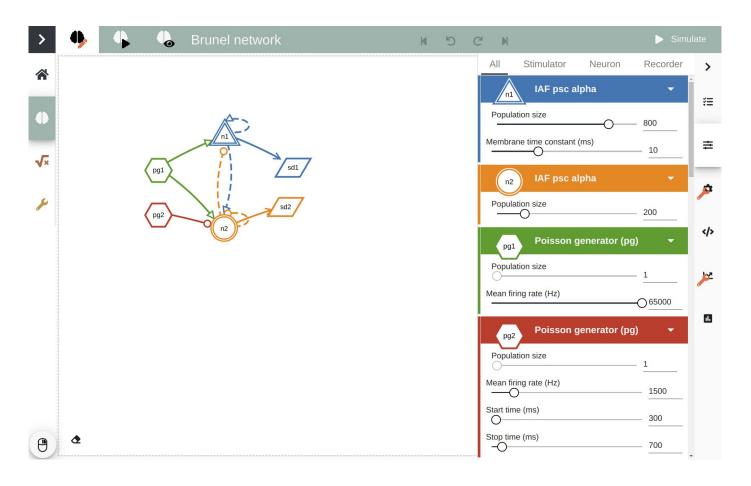
synapse models

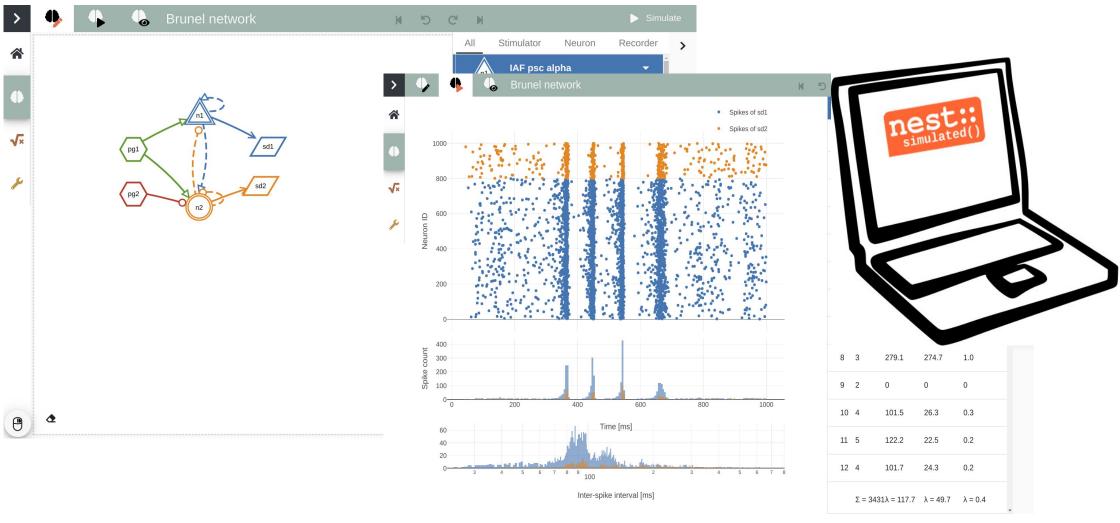
connectivity

simulation

analysis & validation


$$C_m \frac{dV}{dt} = -g_L(V - E_L) + g_L \Delta_T \exp\left(\frac{V - V_{th}}{\Delta_T}\right) - g_e(t)(V - E_e)$$
$$-g_i(t)(V - E_i) - w + I_e$$





NEST Desktop

NEST Desktop

How to use NEST Desktop

Usage Guide Setup Guide

Command API

Troubleshootings

Use NEST Desktop on EBRAINS

How to deploy NEST Desktop

Deploy NEST Desktop in Docker Deploy NEST Desktop on HBP

Deploy NEST Desktop on bwCloud

How to develop NEST Desktop

Preparation

Source code

Icon description

Python Package Index (PyPI)

User documentation workflow Sources

Docs » NEST Desktop

NEST Desktop

Hello there!

NEST Desktop is a web-based GUI application for NEST Simulator, an advanced simulation tool for the computational neuroscience.

The app enables the rapid construction, parametrization, and instrumentation of neuronal network models.

It's so great that you want to use NEST Desktop.

Let's get started.

How the documentation is organized

The documentation is organized into three sections. Select the appropriate section that fits your needs.

The User

learns how to build nodes and links, and perform simulations on the graphical

The Deployer

learns how to set up NEST Desktop on a machine via the Python Package, Docker or Singularity installation.

The Developer

architecture of NEST Desktop and how to contribute cod or enhancements to the

learns the source code

O Edit on GitHu ABOUT NEST DESKTOP

Abstract

Past events

NEST Desktop

How to use NEST Desktop

3 Usage Guide

Explore neuron models and devices

Manage projects

Construct neuronal networks

Simulate neuronal networks

Explore network activity

Setup Guide

Troubleshootings

Use NEST Desktop on EBRAINS

How to deploy NEST Desktop

Deploy NEST Desktop in Docker

Deploy NEST Desktop on HBP

Deploy NEST Desktop on bwCloud

How to develop NEST Desktop

Concept of the interface

Preparation

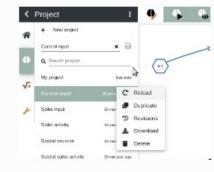
Source code

Icon description


The semantic versioning

Python Package Index (PyPI)

User documentation workflow


Sources

Explore neuron models and devices

The model page provides you detailed documentation of models. When a selected model is a neuron, it also shows activity graph of neuronal response to excitatory and inhibitory spike inputs at 100 ms and 300 ms, respectively.

Manage projects

NEST Desktop has project management helping you to organize your networks and network activity. An important remark is that it stores only neuronal networks in database and activity will be lost after page reload. If you want to explore activity of the project, you have to start the simulation (See Simulate neuronal networks).

Clicking on a New project creates a new project where you can construct network from the scratch (See Construct neuronal networks). It is useful to give project a proper name that you can

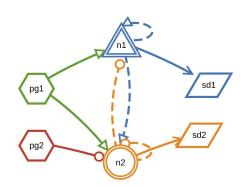
Check out https://nest-desktop.readthedocs.org

Network Level Spiking Simulations EBRAINS Context

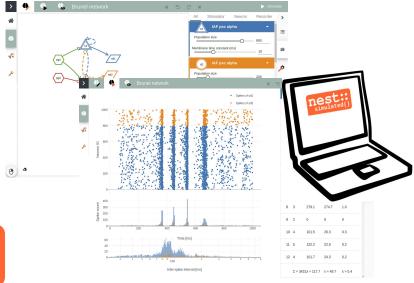
neuron models

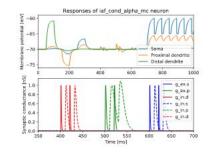
synapse models

connectivity


simulation

analysis & validation


$$C_m \frac{dV}{dt} = -g_L(V - E_L) + g_L \Delta_T \exp\left(\frac{V - V_{th}}{\Delta_T}\right) - g_e(t)(V - E_e)$$
$$-g_i(t)(V - E_i) - w + I_e$$


The Neural Simulation Technology Initiative

ABOUT NEST DOWNLOAD FEATURES DOCUMENTATION PUBLICATIONS COMMUNITY

NEST Simulator is a simulator for spiking neural network models that focuses on the

multi-compartment neuron example

[...]

- dynamics,
- size and

• structure of neural systems for your research, r

rather than on the exact morphology of individual neurons.

Tools for modern computational neuroscience

Synaptic plasticity

Topological network definition

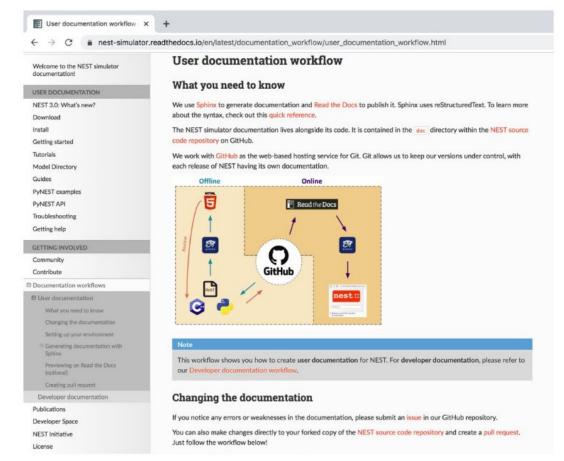
Precise spike timing

MUSIC interface

Correctness and release stability

A battery of unit tests

Continuous integration (CI) techniques


Regular open source releases under the terms of the GPL

DOCUMENTATION REQUIREMENTS AND CONCEPTS DESTRICTION

- For the community, documentation should be easy to:
 - Find
 - Use
 - Understand
 - Write
 - Maintain

Search docs

□ Welcome to the NEST simulator documentation!

⊞ Introducing NEST 3.0

USER DOCUMENTATION

NEST 3.0: What's new?

Download

Install

Configure

Getting started

Tutorials

Guides

PyNEST examples

Model Directory

PyNEST API

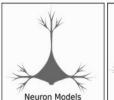
Troubleshooting

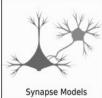
Getting help

GETTING INVOLVED

Community

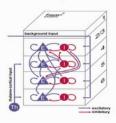
Contribute


- 1. Models of information processing e.g., in the visual or auditory cortex of mammals,
- 2. Models of network activity dynamics, e.g., laminar cortical networks or balanced random networks,
- 3. Models of learning and plasticity.


New to NEST?

Start here at our Getting Started page

Have an idea of the type of model you need?


Click on one of the images to access our model directory:

Create complex networks using the Microcircuit Model:

Need a different model?

Check out how you can create you own model here.

Have a question or issue with NEST?

See our Getting Help page.

Check out https://nest-simulator.readthedocs.org

azimuth_angle* entry in the specific mask dictionary for rotation from the x-axis towards the y-axis about the z-axis, or a 'polar_angle' entry, specifying the rotation angle in degrees from the z-axis about the (possibly rotated) x axis, from the (possibly rotated) y-axis. You can specify both at once of course. If both are specified, we first rotate about the z-axis and then about the new x-axis. NEST currently does not support rotation in all three directions, the rotation from the y-axis about the (possibly rotated) z-axis, from the (possibly rotated) x-axis is missing.

nest::

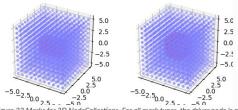


Figure 33 Masks for 3D NodeCollections. For all mask types, the driver node is marked by a wide light-red circle, the selected pool nodes by red dots and the masks are red. From left to right: box and spherical masks centered about the driver node.

Masks for grid-based layers

nest::

Welcome to the NEST simulator

Search docs

documentation!

USER DOCUMENTATION

Download

Configure

Tutorials

☐ Guides

Getting started

Install

NEST 3.0: What's new?

NEST 3.0: What's new?

Running simulations

Stimulating the network

Recording from simulations

multimeter - Sampling continuous quantities from neurons

spike recorder - Collecting spikes

weight_recorder - Recording weights from synapses

NEST 3.0: Detailed transition guide

Grid-based layers can be connected using rectangular *grid masks*. For these, you specify the size of the mask not by lower left and upper right corner coordinates, but give their size in x and y direction, as in this example:

The resulting connections are shown in Figure 34. By default the top-left corner of a grid mask, i.e., the grid mask element with grid index [0,0]², is aligned with the driver node. You can change this alignment by specifying an *anchor* for the mask:

References

Visit

https://nestml.readthedocs.org

https://nest-desktop.readthedocs.org

https://pynn.readthedocs.org

https://nest-simulator.readthedocs.org

https://nest-simulator.org

Discover everything at

https://ebrains.eu

Slides (or parts) where provided by Charl Linssen, Sara Konradi, Sebastian Spreitzer, Steffen Graber and others.