000889367 001__ 889367
000889367 005__ 20211105141527.0
000889367 0247_ $$2doi$$a10.1103/PhysRevMaterials.5.014403
000889367 0247_ $$2ISSN$$a2475-9953
000889367 0247_ $$2ISSN$$a2476-0455
000889367 0247_ $$2Handle$$a2128/26775
000889367 0247_ $$2WOS$$aWOS:000607538000003
000889367 037__ $$aFZJ-2021-00256
000889367 041__ $$aEnglish
000889367 082__ $$a530
000889367 1001_ $$00000-0001-5175-8629$$aYang, Lin$$b0$$eCorresponding author
000889367 245__ $$aOrigin of the hump anomalies in the Hall resistance loops of ultrathin SrRuO 3 / SrIrO 3 multilayers
000889367 260__ $$aCollege Park, MD$$bAPS$$c2021
000889367 3367_ $$2DRIVER$$aarticle
000889367 3367_ $$2DataCite$$aOutput Types/Journal article
000889367 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636031379_20083
000889367 3367_ $$2BibTeX$$aARTICLE
000889367 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889367 3367_ $$00$$2EndNote$$aJournal Article
000889367 520__ $$aThe proposal that very small Néel skyrmions can form in SrRuO3/SrIrO3 epitaxial bilayers and that the electric field effect can be used to manipulate these skyrmions in gated devices strongly stimulated the recent research of SrRuO3 heterostructures. A strong interfacial Dzyaloshinskii-Moriya interaction was considered as the driving force for the formation of skyrmions in SrRuO3/SrIrO3 bilayers. Here, we investigated nominally symmetric heterostructures in which an ultrathin ferromagnetic SrRuO3 layer is sandwiched between large spin-orbit coupling SrIrO3 layers, for which the conditions are not favorable for the emergence of a net interfacial Dzyaloshinskii-Moriya interaction. Previously the formation of skyrmions in the asymmetric SrRuO3/SrIrO3 bilayers was inferred from anomalous Hall resistance loops showing humplike features that resembled topological Hall effect contributions. Symmetric SrIrO3/SrRuO3/SrIrO3 trilayers do not show hump anomalies in the Hall loops. However, the anomalous Hall resistance loops of symmetric multilayers, in which the trilayer is stacked several times, do exhibit the humplike structures, similar to the asymmetric SrRuO3/SrIrO3 bilayers. The origin of the Hall effect loop anomalies likely resides in unavoidable differences in the electronic and magnetic properties of the individual SrRuO3 layers rather than in the formation of skyrmions.
000889367 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000889367 588__ $$aDataset connected to CrossRef
000889367 7001_ $$00000-0002-7540-2683$$aWysocki, Lena$$b1
000889367 7001_ $$0P:(DE-HGF)0$$aSchöpf, Jörg$$b2
000889367 7001_ $$0P:(DE-HGF)0$$aJin, Lei$$b3
000889367 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b4
000889367 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b5
000889367 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b6
000889367 7001_ $$00000-0002-3704-9890$$avan Loosdrecht, Paul H. M.$$b7
000889367 7001_ $$00000-0003-3196-7313$$aLindfors-Vrejoiu, Ionela$$b8
000889367 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.5.014403$$gVol. 5, no. 1, p. 014403$$n1$$p014403$$tPhysical review materials$$v5$$x2475-9953$$y2021
000889367 8564_ $$uhttps://juser.fz-juelich.de/record/889367/files/LinYang_PhysrevMater_2021.pdf$$yOpenAccess
000889367 8564_ $$uhttps://juser.fz-juelich.de/record/889367/files/PhysRevMaterials.5.014403.pdf$$yOpenAccess
000889367 909CO $$ooai:juser.fz-juelich.de:889367$$pdriver$$pVDB$$pdnbdelivery$$popen_access$$popenaire
000889367 9101_ $$0I:(DE-HGF)0$$60000-0001-5175-8629$$aExternal Institute$$b0$$kExtern
000889367 9101_ $$0I:(DE-HGF)0$$60000-0002-7540-2683$$aExternal Institute$$b1$$kExtern
000889367 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000889367 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b4$$kFZJ
000889367 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b5$$kFZJ
000889367 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b6$$kFZJ
000889367 9101_ $$0I:(DE-HGF)0$$60000-0002-3704-9890$$aExternal Institute$$b7$$kExtern
000889367 9101_ $$0I:(DE-HGF)0$$60000-0003-3196-7313$$aExternal Institute$$b8$$kExtern
000889367 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000889367 9141_ $$y2021
000889367 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000889367 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000889367 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000889367 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2018$$d2020-09-05
000889367 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000889367 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000889367 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000889367 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889367 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000889367 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000889367 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000889367 920__ $$lyes
000889367 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000889367 980__ $$ajournal
000889367 980__ $$aVDB
000889367 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000889367 980__ $$aUNRESTRICTED
000889367 9801_ $$aFullTexts