001     889378
005     20220930130303.0
024 7 _ |a 10.3390/w13020226
|2 doi
024 7 _ |a 2128/27079
|2 Handle
024 7 _ |a WOS:000611766300001
|2 WOS
037 _ _ |a FZJ-2021-00261
082 _ _ |a 690
100 1 _ |a Wolters, Tim
|0 P:(DE-Juel1)177674
|b 0
245 _ _ |a Checking the Plausibility of Modelled Nitrate Concentrations in the Leachate on Federal State Scale in Germany
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1635151242_28703
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In Germany, modelled nitrate concentrations in the leachate are of great importance for the development of scenarios for the long-term achievement of the groundwater quality target according to the specific requirements of the EU Water Framework Directive as well as within the context of the recently adopted general administrative regulation for the designation of nitrate-polluted areas in Germany. For the German federal states of North Rhine-Westphalia (NRW) and Rhineland-Palatinate (RLP), an area-covering modelling of mean long-term nitrate concentrations in leachate with high spatial resolution was carried out using the model system RAUMIS-mGROWA-DENUZ. Hotspot regions with nitrate concentrations in the leachate of 50 mg NO3/L and more were identified for intensively farmed areas in the Münsterland, Lower Rhine, and Vorderpfalz. The validity of modelled values was checked using measured values from 1119 preselected monitoring stations from shallow springs and aquifers filtered near to the surface with oxidizing properties. For the land use categories of urban areas, arable land, grassland, and forest, an at least good agreement of modelled nitrate concentrations in the leachate and measured nitrate concentrations in groundwater was obtained at numerous sites. An equally good agreement was obtained for 1461 measuring stations from the area of responsibility of the Erftverband, which is a major water supplier in the Lower Rhine region. Here, discrepancies have been analyzed in detail due to profound regional knowledge on observation sites. It turned out that in most cases, accuracy limitations of input data (e.g., N balance surpluses of agriculture at the municipal level, 1:50,000 soil map) have been the reason for larger deviations between observed and modelled values. In a broader sense, the case study has shown on the one hand that the model system RAUMIS-mGROWA-DENUZ is able to reliably represent interrelationships and influencing factors that determine simulated nitrate concentrations in the leachate. On the other hand, it has been proven that observed nitrate concentrations in groundwater may provide a solid data source for checking the plausibility of modelled nitrate concentrations in leachate in cases where certain preselection criteria are applied.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cremer, Nils
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Eisele, Michael
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Herrmann, Frank
|0 P:(DE-Juel1)141774
|b 3
700 1 _ |a Kreins, Peter
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kunkel, Ralf
|0 P:(DE-Juel1)129489
|b 5
|u fzj
700 1 _ |a Wendland, Frank
|0 P:(DE-Juel1)129554
|b 6
|e Corresponding author
773 _ _ |a 10.3390/w13020226
|g Vol. 13, no. 2, p. 226 -
|0 PERI:(DE-600)2521238-2
|n 2
|p 226 -
|t Water
|v 13
|y 2021
|x 2073-4441
856 4 _ |u https://juser.fz-juelich.de/record/889378/files/Invoice_MDPI_water-1052690_1413.13EUR.pdf
856 4 _ |u https://juser.fz-juelich.de/record/889378/files/water-13-00226-v2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889378
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177674
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)141774
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129489
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129554
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER-SUI : 2018
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-08-31
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-31
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21