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Abstract

Composite materials consisting of responsive microgels together with additional nanoparticles might provide new and
”smart” functionality, e.g. uptake and release of nanoparticles, or special mechanical or rheological properties of a
solution. Here, composites consisting of PNIPAM microgels and silica nanoparticles have been investigated by CryoTEM
and neutron scattering techniques. The formation of ”raspberry” like core-shell structures with a silica nanoparticle layer
around the microgel core has been observed.
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Introduction1

Microgels (MG) are polymeric nanoparticles consisting2

of polymer chains, which are crosslinked to form a single3

particle with a size of the order of 100 nm. In solution, mi-4

crogels can be designed with a responsiveness to changes in5

temperature or chemical potential and are therefore inter-6

esting materials for smart applications [1, 2, 3]. Organic-7

inorganic hybrid particles, for example microgel-silica hy-8

brid particles with a silica core, have been investigated and9

characterized [4, 5]. Microgel particles with a silica surface10

coating are presented in Ref. [6], nanorods adsorbed onto11

a microgel surface were investigated in Ref. [7]. When12

microgels are employed as substrates for coatings, one has13

to consider the prososity or permeability of the network as14

polymers or particles - depending on the their size - can15

be adsorbed to or absorbed by the microgel. Furthermore,16

both processes can affect the size of the hybrid microgels17

in a complex matter [8]. Nevertheless, it has been shown18

that even layer-by-layer adsorption onto microgels is possi-19

ble [9]. Here, we study poly-N-isopropylacrylamide (PNI-20

PAM) microgels, having a volume phase transition tem-21

perature (VPTT) of 32 °C, determined with DLS. For this22

study, we used a combination of neutron spin echo (NSE)23

and cryo-TEM investigation connecting the dynamical be-24

havior to the structural properties. The former technique25

has been used in the past to study internal microgel dy-26

namics [10, 11] while the latter gives a real space view on27

microgels on nanoscopic length scales.28

Method29

Microgels were produced by precipitation polymerisa-30

tion [12], with the monomer N-isopropylacrylamide (NI-31

PAM), the cross-linker methylenbisacrylamide (BIS, 232

mol%), ammonium peroxodisulphate (APS) as initiator33

and the surfactant sodium dodecylsulphate (SDS), all pur-34

chased from VWR, Germany. Deuterium oxide (D2O)35

were procured from Deutero, Germany. Plain silica parti-36

cles (with terminal Si-OH-bonds) as aqueous suspension,37

sicastar® of 10 nm diameter, was obtained from Micro-38

mod, Germany.39

Microgel (MG) dispersions (2.5 wt.% in D2O) were pre-40

pared. The measured samples with guest particles had41

a 0.25 wt% concentration of silica nanoparticles. NSE42

measurements have been performed by using the J-NSE43

spectrometer at the FRM II research reactor in Garching,44

Germany [13] at a wavelength of 8 Å.The samples were45

mounted in a thermostat controlled sample environment.46

The internal dynamics of the microgel with and without47

guest particles was then measured at a temperature of48

22 °C, below the VPTT (and a short try at 42°C above49

the VPTT). Scattering from corresponding quartz cells50

containing the deuterated solvent has been subtracted as51

background from the NSE data. Cryo-TEM experiments52

were carried out with a JEM 2200 FS EFTEM instru-53

ment (JEOL, Tokyo, Japan) at -180°C with a cryo-transfer54

holder ((Model 920, Gatan, Munich, Germany). Zero-loss55

filtered images were taken under reduced dose conditions56

(< 10 000 e-/nm2). MG dispersions (1 wt.% in D2O) were57

prepared few days before the experiment. The measured58

samples with silica guest particles had a 0.1 wt% concen-59

tration. A holey carbon-coated copper grid was dipped60

into the solution and after blotting plunged into liquid61

ethane, before being transferred to the Cryo-TEM.62

Results and Discussion63

The interaction of PNIPAM microgels with silica64

nanoparticles has been investigated in solution with neu-65
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Figure 1: Cryo-TEM images of a) the pure microgel and b) the
microgel with added silicon nanoparticles into the solution. The
inset in b) shows such a Si nanoparticle decorated microgel at higher
magnification.

tron spin echo spectroscopy and compared to Cryo-TEM66

images of the respective samples.67

Cryo TEM images of the frozen microgel suspension68

showed the typical smooth spherical microgel particle in69

Fig. 1 a). The silica particles added to the suspension70

arranged around the microgel particles, as shown in Fig.71

1 b).72

The Silica particle distribution of such a 2D projection73

is not straighforward. A reconstruction of the 3D den-74

sity profile of such microgels has been done in Ref. [14].75

Here we checked in a simplified procedure the radial av-76

erage of single particles, showing a flat absorption with a77

slight increase in grayscale towards the border. We inter-78

prete the arrangement of nanoparticles thus as a multilayer79

shell around the core of the PNIPAM particle (or at least80

the core is less densely filled with nanoparticles). A self81

assembled hybrid particle has been formed. With NSE,82

the local thermally driven fluctuations are observed. A83

first experiment at 22°C is presented in Fig. 2. At large84

Q, the segmental chain dynamics of the microgel parti-85

cles is observed. The pure microgel shows a strechted ex-86

ponential relaxation (S(Q, t/S(Q, 0) = exp(−(Γt)β) with87

β = 0.78 ± 0.07, indicating Zimm-dynamics of the seg-88

Figure 2: Intermediate scattering function at 22 °C. The segmental
chain dynamics dominant at high Q is altered by the Si particles
from Zimm like behaviour (with a stretched exponential decay) to
diffusive behaviour (simple exponential decay).

ments. The influence of the Si nanoparticles on the seg-89

mental chain dynamics is a change in line shape to an90

exponential decay with β = 1.06 ± 0.08, characteristic for91

density fluctuations imposed by the additional Si parti-92

cle shell, which suppress the segmental dynamics on these93

length scales of 2π/Q = 4 nm. At larger length scales94

(Q=0.05 Å−1) no significant difference between the micro-95

gel with and without Si particles has been observed within96

the time range of observation. A similar suppression of97

Zimm dynamics has been observed recently by electrolytes98

added to the microgels [15].99

Electrostatic interactions of the Silicon nanoparticles100

with the microgels might be the origin of this ”raspberry”101

like structure, more investigations of the interactions such102

as ζ-potential measurements would be required to analyse103

this in more depth. Surface modification of the Si nan-104

particles and modifications of the microgel by introducing105

chaged groups may shed a more detailed light on the in-106

teraction between Si nanoparticles and microgels. Further107

studies in this direction are planned for the future.108
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