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a b s t r a c t 

Operational optimization of multi-energy systems requires a mathematical model that is accurate and 

computationally efficient. A model can be generated in a data-driven way if measured data is available. 

Commonly, data is then used to model each component of the multi-energy system independently. How- 

ever, independent modeling of each component may lead to models that are unnecessarily complicated 

and, thus, inefficient in practice. 

In this work, we propose the method AutoMoG for Auto mated data-driven Mo del G eneration of multi- 

energy systems using piecewise-linear regression. AutoMoG provides Mixed-Integer Linear Programming 

models of multi-energy systems. To accurately model the overall multi-energy system, AutoMoG balances 

the errors caused by each component. Model accuracy is measured in terms of operating cost. 

In a case study, AutoMoG provides a multi-energy system model with less linear sections than single- 

component regression Still, AutoMoG retains high accuracy. Thereby, AutoMoG enables efficient data- 

driven modeling as the basis for multi-energy system optimization. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Multi-energy systems usually consist of multiple components 

uch as combined-heat-and-power (CHP) engines or absorption 

hillers. The components may be very different. The interaction 

f these different components leads to complex behavior on the 

ystem level. Due to the complex behavior of multi-energy sys- 

ems, optimal operation usually requires mathematical optimiza- 

ion ( Mancarella, 2014 ). The resulting operational optimization 

roblem is challenging. Goderbauer et al. (2019) show that the op- 

rational optimization problem of multi-energy systems is weakly 

P-hard, even for a single load case. As these challenging opera- 

ional optimization problems have to be solved frequently in prac- 

ice, the underlying models of the multi-energy systems need to 

e computationally efficient. However, it is challenging to generate 

ulti-energy system models that are both accurate and computa- 

ionally efficient ( Mitsos et al., 2018 ). 
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In general, two approaches are followed to generate multi- 

nergy system models: first-principles modeling and data-driven 

odeling. First-principles models are derived from theory with the 

im to represent the real physical behavior of a system or com- 

onent ( Smolin et al., 2019 ). However, solving full first-principles 

odels often is computationally demanding ( McBride and Sund- 

acher, 2019 ). Furthermore, frequently the physical behavior of 

he system is partly unknown, which prevents full first-principles 

odeling. 

The other possibility to generate a multi-energy system model 

s data-driven modeling. Data-driven models are derived from 

ata with the aim to represent the input-output relationship of 

 system ( McBride and Sundmacher, 2019 ). Measured data is in- 

reasingly available in multi-energy systems, in particular, due to 

he implementation of energy management systems according to 

SO 50 0 01:2018 (2018) . Thus, data-driven model generation for 

ulti-energy systems becomes increasingly promising. 

In a multi-energy system, measured input and output data can 

e used to generate a data-driven model of each component. The 

easured data is used to regress the input-output relationship 

f each component. The regression approximates a functional re- 

ationship between independent input variables and output vari- 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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bles from a given data set ( Yang et al., 2016 ). For regression,

any approaches are available such as linear regression, kriging 

 Kleijnen and Beers, 2004 ), support-vector regression ( Smola and 

chölkopf, 2004 ) or neural networks ( Huang et al., 2010 ). 

In operational optimization, the generated model will usu- 

lly be solved repeatedly. Thus, the regression analysis should 

ield a model that is computationally efficient. At the same time, 

he model has to be sufficiently accurate. To generate accurate 

nd computationally efficient models, Cozad et al. (2014) and 

ilson and Sahinidis (2017) presented a framework for automated 

earning of algebraic models (ALAMO). ALAMO provides black-box 

odels from data obtained by simulation or experiments. Infor- 

ation criteria are used to find simple models with sufficient 

ccuracy. However, the resulting model is in general nonlinear. 

hus, if this nonlinear model is used for operational optimization, 

he problem will usually be a Mixed-Integer Nonlinear Program 

MINLP). In practice, MINLPs are still challenging to solve to global 

ptimality ( Mitsos et al., 2018 ). 

Commonly, nonlinearities are therefore approximated by 

iecewise-linear models leading to Mixed-Integer Linear Pro- 

rams (MILPs) ( Zhang et al., 2016; Gao et al., 2018; Voll et al.,

013 ). MILPs can be efficiently solved to global optimality 

ith commercial state-of-the-art solvers. Methods are avail- 

ble to generate piecewise-linear models from measured data: 

hang et al. (2016) proposed a data-driven algorithm to generate 

urrogate models of process systems. The generated surrogate 

odels are piecewise linear in convex regions and, thus, can 

e used in MILPs. Yang et al. (2016) and Gkioulekas and Papa- 

eorgiou (2018) provided a mathematical programming approach 

or piecewise-linear regression. The piecewise-linear regression 

odels are obtained by solving MILP regression problems. MILP re- 

ression problems minimize the least distances between data and 

odel to retain linearity. Recently, Kong and Maravelias (2020) and 

ebennack and Krasko (2020) proposed formulations to model 

ontinuous piecewise-linear regression problems as MILPs. The 

rovided models are piecewise linear and, thus, can be used in 

ILPs. 

The reviewed methods could solve the piecewise-linear regres- 

ion problem for any component in a multi-energy system. How- 

ver, modeling each component of a multi-energy system indepen- 

ently may lead to an overall model of the multi-energy system 

hat is unnecessarily complicated and, thus, computationally inef- 

cient. 

Thus, in this work, we propose the method AutoMoG for 

uto mated data-driven Mo del G eneration of multi-energy sys- 

ems. AutoMoG solves a data-driven model generation problem 

or multi-energy systems, while balancing the errors caused by 

ach component’s model in the overall model of the multi-energy 

ystem. The model of the multi-energy system is assumed to be 

sed for an economic optimization. Thus, cost-based weighting fac- 

ors are used to determine the impact of each component’s model 

rror on the error of the multi-energy system model. AutoMoG 

erminates once a predefined accuracy of the multi-energy sys- 

em model is achieved. However, if the predefined accuracy is 

ot achievable, AutoMoG avoids overfitting by using the Corrected 

kaike Information Criterion AIC C ( Hurvich and Tsai, 1993 ). Au- 

oMoG provides an MILP model of the multi-energy system with 

ontinuous representation of the components’ input-output rela- 

ionship. 

In Section 2 , we formulate the data-driven model generation 

roblem for multi-energy systems. In Section 3 , we describe the 

roposed method AutoMoG. In Section 4 , we apply AutoMoG to a 

ase study for a decentralized multi-energy system from literature. 

n Section 5 , we conclude with the key findings. 
2 
. Data-driven model generation for multi-energy systems 

The data-driven model generation problem for multi-energy 

ystems shall provide a sufficiently accurate and computationally 

fficient MILP model of the multi-energy system. In the provided 

ILP model, the input-output relationship of each component s ∈ S

n the multi-energy system has to be represented by a piecewise- 

inear model. 

In general, the functional relationship between input I s (e.g. gas 

r electricity) and output O s (e.g. heating or cooling) of a compo- 

ent s (e.g. boiler or compression chiller) is nonlinear. For MILP op- 

imization models, nonlinear functional relationships are approxi- 

ated by piecewise-linear functions I Model 
s ( O s,n ) . Here, we choose 

o model the input I Model 
s as linear function of the output O s,n , be-

ause we can easily convert the input to operating cost. This con- 

ersion is crucial for the AutoMoG method; more details are given 

n Section 3.2 . However, AutoMoG can be easily adapted to model 

he output as function of the input. 

 

Model 
s = 

∑ 

n 

ηs,n · ( a s,n · O s,n + b s,n ) (1) 

 s,n ≥ o UB 
s,n −1 · ηs,n ∀ n ∈ N s (2) 

 s,n ≤ o UB 
s,n · ηs,n ∀ n ∈ N s (3) 

 

n 

ηs,n ≤ 1 (4) 

ith I Model 
s being the modeled input of component s and N s be- 

ng the number of piecewise-linear sections n of component s . The 

arameter a s,n denotes the gradient of linear section n and the pa- 

ameter b s,n denotes the intercept of linear section n . The binary 

ariable ηs,n is equal to 1, if and only if the output O s,n lies in be-

ween the upper bound o UB 
s,n of the linear section n and the upper 

ound o UB 
s,n −1 

of the lower linear section n − 1 . Eq. (4) ensures that

he output O s,n lies on maximum one linear section n . 

We assume that an MILP model with fewer binary variables can 

e more efficiently solved. This assumption is often made in prac- 

ice ( Katz et al., 2020 ). The number of binary variables in the MILP

odel rises with the number of piecewise-linear sections. Thus, 

he objective of the data-driven model generation is to identify the 

inimal number of piecewise-linear sections N for a multi-energy 

ystem model with a given accuracy. 

The resulting structure of the data-driven model-generation 

roblem for multi-energy systems is the following: 

min number of piecewise-linear sections in multi-energy system 

model (Eq. (5)) 

s.t. the multi-energy system model fulfills a given accuracy 

(Eq. (6)) 

the multi-energy system model is fitted to measured data 

(Eq. (7)) 

the component models are piecewise linear (Eq. (8)-(9)) 

the piecewise-linear models are continuous (Eq. (10)-(13)) 

2 equations to count all piecewise-linear sections 

(Eq. (14)-(15)) 

The mathematical formulation of the data-driven model- 

eneration problem for multi-energy systems is given in Eq. (5) - 

19) : 

min N = 

S ∑ 

s 

N s (5) 
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Table 1 

List of all variables and parameters of the actual problem given 

in Eq. (5) - (19) . 

Variables N, N s , �C System , I Model 
s,d 

, γs,n,d , A s,n , B s,n , O 
UB 
s,n , κs,n 

Parameters δrel , c Input 
s , I Data 

s,d 
, O Data 

s,d 
, | D | , m 

s

�

I

n

0

O

O

0

κ

N

I

O
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s
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3

m

p

.t. �C System ≤ δrel ·
∑ 

s ∈ S 

∑ 

d∈ D 
c Input 

s · I Data 
s,d (6) 

C System = 

∑ 

s ∈ S 
c Input 

s ·
√ ∑ 

d∈ D 
(I Data 

s,d 
− I Model 

s,d 
) 2 (7) 

 

Model 
s,d = 

∑ 

n ∈ N max 
s 

γs,n,d · (A s,n · O 

Data 
s,d + B s,n ) , ∀ s ∈ S, d ∈ D (8) 

∑ 

 ∈ N max 
s 

γs,n,d = 1 , ∀ s ∈ S, d ∈ D (9) 

 = κs,n +1 ·
[
( A s,n +1 − A s,n ) · O 

UB 
s,n + B s,n +1 − B s,n 

]
, 

∀ s ∈ S, n ∈ N 

max 
s (10) 

 

UB 
s,n ≥ O 

Data 
s,d · γs,n,d , ∀ s ∈ S, n ∈ N 

max 
s , d ∈ D (11) 

 

UB 
s,n · γs,n +1 ,d ≤ O 

Data 
s,d · γs,n +1 ,d , ∀ s ∈ S, n ∈ N 

max 
s , d ∈ D (12) 

 ≤ (O 

UB 
s,n +1 − O 

UB 
s,n ) · κs,n +1 , ∀ s ∈ S, n ∈ N 

max 
s (13) 

s,n ≥ 1 

| D | ·
∑ 

d∈ D 
γs,n,d , ∀ s ∈ S, n ∈ N 

max 
s (14) 

 s = 

∑ 

n ∈ N max 
s 

κs,n , ∀ s ∈ S (15) 

 

Model 
s,d ≥ 0 , ∀ s ∈ S, d ∈ D (16) 

 

UB 
s,n ≥ 0 , ∀ s ∈ S, n ∈ N 

max 
s (17) 

 s,n , B s,n ≤ m · κs,n , ∀ s ∈ S, n ∈ N 

max 
s (18) 

 s,n , B s,n ≥ −m · κs,n , ∀ s ∈ S, n ∈ N 

max 
s (19) 

In the following, we refer to the data-driven model generation 

roblem for multi-energy systems ( Eq. (5) - (19) ) as the actual prob-

em. We state the variables and parameters of the actual problem 

n Table 1 . 

d ∈ D is a measured data point. c 
Input 
s is a cost-based weight- 

ng factor and depends on the type of input for component s . Dif- 

erent components of the multi-energy system may have different 

orms of input (e.g., gas for a boiler, but electricity for a compres- 

ion chiller). By using cost-based weighting factors c 
Input 
s , we con- 

ert the different forms of input to operating costs. We show in 

ection 3.2 how we determine cost-based weighting factors c 
Input 
s 

or a typical multi-energy system. N 

max 
s is the maximum number of 

iecewise-linear section allowed to model component s . The binary 

ariable κs,n denotes whether linear section n is used to model 

omponent s . The binary variable γs,n,d denotes whether data point 

is assigned to linear section n of component s . A s,n is the gradient

nd B s,n is the intercept of linear section n in the piecewise-linear 

odel of component s . 
3 
The objective of the actual problem is to minimize the num- 

er of piecewise-linear sections N within the multi-energy sys- 

em model ( Eq. (5) ). Constraints (6) - (7) restrict the sum of squared

esiduals of all data points d and components s to be smaller than 

he product of the predefined relative error of the multi-energy 

ystem δrel and the sum of the cost of all measured input data. 

ere, the sum of squared residuals of all data points d of com- 

onent s are weighted by the cost-based weighting factor c s . Con- 

traints (8) evaluate the piecewise-linear models at each data point 

for each component s . Constraints (9) ensure that each data point 

is assigned to exactly one linear section n for each component 

 . Constraints (10) force the piecewise-linear models to be con- 

inuous at the breakpoints. Constraints (11) - (13) define the vari- 

bles for the upper bound O 

UB 
s,n of each linear section n and arrange 

he linear sections in ascending order. Constraints (14) ensure that 

he linear section n is chosen to model component s, if at least 

ne data point d is assigned to the linear section n . Constraints 

15) sum up the number of chosen linear sections for each com- 

onent s . Constraints (16) - (17) ensure I Model 
s,d 

and O 

UB 
s,n to be positive

ariables. Constraints (18) - (19) assign the value 0 to the variables 

 s,n and B s,n if linear section n is not selected for component s . The

onstrains use a Big-M formulation with the Big-M value m . 

The actual problem is an MINLP problem. The nonlinear char- 

cter of the actual problem results from Eq. (7) , (8), (10) and 

13) . Solving the actual problem is computationally demanding. 

e implemented the actual problem in GAMS ( GAMS Develop- 

ent Corporation, 2016 ) and tried to solve the actual problem with 

tate-of-the-art MINLP solvers (SCIP ( Gleixner et al., 2018 ), BARON 

 Tawarmalani and Sahinidis, 2005 ), DICOPT ( Kocis and Gross- 

ann, 1989 ) and BONMINH ( COIN-OR (Project Manager P. Bonami), 

016 )). The MINLP solvers could not even find a feasible solution 

or a typically sized industrial multi-energy system ( Section 4.5 ). 

he MINLP solvers ran without a time limit. 2 solvers wrongly con- 

idered the problem infeasible, 1 solver terminated without a so- 

ution and 1 solver reached an iteration limit. Thus, solving the ac- 

ual problem is impractical in applications. 

However, the actual problem can be rendered computation- 

lly feasible by 2 possibilities: One possibility is to linearize the 

ctual problem (MINLP) to an MILP, based on the formulation 

y Yang et al. (2016) . This linearization introduces a few short- 

omings: Squared residuals can no longer be employed in an 

ILP ( Eq. (7) ). Absolute residuals are calculated instead. Further- 

ore, the resulting piecewise-linear models are in general not 

ontinuous, because the nonlinear continuity constraint cannot 

e considered in an MILP ( Eq. (10) ). Recently, Kong and Mar- 

velias (2020) and Rebennack and Krasko (2020) reformulated the 

onlinear continuity constraint into a set of linear constraints. 

owever, we show in Section 4.5 that the performance of the lin- 

arized problem is not always satisfying for practical applications 

ven if the continuity constraint is ignored. Thus, in general, the 

olution of the linearized problem is not a feasible solution of the 

ctual problem. Therefore, solving the linearized problem is not al- 

ays satisfying for practical applications. Thus, there is a need for 

 solution method that provides a solution of the actual problem 

n a short time. 

This need leads to the second possibility: decomposing the ac- 

ual problem and solving the decomposed problem. For this pur- 

ose, we propose the decomposition method AutoMoG in this 

ork. AutoMoG provides a solution of the actual problem in a 

hort time and, thus, is suitable for practical applications. 

. AutoMoG: Automated data-driven model generation of 

ulti-energy systems 

AutoMoG decomposes the actual problem ( Eq. (5) - (19) ) to 

iecewise-linear regression problems for each component in a 
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Fig. 1. Proposed method AutoMoG for automated model generation using measured data. �C rel,System is the relative error of the multi-energy system model ( Section 3.2 ). 

δrel is the allowed relative error of the multi-energy system model. The Corrected Akaike Information Criterion AIC c is checked to avoid overfitting. 
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ulti-energy system. AutoMoG iteratively increases the accuracy of 

he multi-energy system model by increasing the number of linear 

ections N ( Fig. 1 ). 

In the following, we briefly outline the AutoMoG method, be- 

ore we explain the steps of AutoMoG in detail. 

Step 1: For each component s, AutoMoG performs a least- 

quares regression between measured input and output data with 

 predefined number of linear sections N 

max 
s ( Section 3.1 ). The re- 

ulting piecewise-linear models I Model 
s ( O s ) are suitable for an MILP 

odel of the multi-energy system. 

Step 2: The error of the multi-energy system model is evaluated 

 Section 3.2 ). For evaluation, AutoMoG uses a cost-based weighting 

actor c 
Input 
s to determine the impact of a component’s error on the 

rror of the multi-energy system model. The cost-based weighting 

actor c 
Input 
s depends on the input of a component, because Auto- 

oG models the input as a function of the output ( Eq. (1) ). We de-

cribe how to determine the cost-based weighting factors c 
Input 
s in 

ection 3.2 . AutoMoG terminates if the relative error of the multi- 

nergy system model �C rel,System is smaller than or equal to the 

llowed relative error δrel . 

Step 3: If the relative error of the multi-energy system model 

C rel,System exceeds the allowed relative error δrel , AutoMoG checks 

he Corrected Akaike Information Criterion AIC c ( Hurvich and 

sai, 1993 ). The Corrected Akaike Information Criterion AIC c is used 

or model selection by capturing the trade-off between model ac- 

uracy and model complexity. If the information criterion AIC c 
orsens for the refinement of a component, overfitting might oc- 

ur. Thus, AutoMoG does not refine any component for which the 

nformation criterion AIC c worsens. AutoMoG terminates if the in- 

ormation criterion AIC c worsens for the refinement of all possible 

omponents. If AutoMoG terminates in Step 3, the allowed relative 

rror δrel is not reached, but the measured data do not allow a 

ore accurate model of the multi-energy system without the risk 

f overfitting. 

Step 4: AutoMoG chooses one component to be refined based 

n the maximum error reduction in the multi-energy system 

odel. For this purpose, AutoMoG calculates the error reduction in 

he multi-energy system model for the refinement of each compo- 

ent ( Section 3.4 ). For the chosen component, AutoMoG increases 

he number of piecewise-linear sections by 1 and applies step 1 to 

he chosen component. 

If the allowed relative error δrel is reached, AutoMoG provides 

 fully parameterized MILP model of the multi-energy system. Au- 

oMoG aims to find the minimal number of piecewise-linear sec- 

ions N to accurately represent the multi-energy system. However, 

utoMoG cannot guarantee to provide the model with the minimal 

umber of piecewise-linear sections N. 

In the following, we explain the steps of AutoMoG in detail. 

ε

4 
.1. Step 1: Piecewise-linear regression for each component 

AutoMoG solves a piecewise-linear regression problem for each 

omponent s ∈ S separately, minimizing the sum of squared resid- 

als ε s . The squared residuals between the modeled Input I Model 
s,d 

nd the measured Input I Data 
s,d 

are summed up for all measured data 

oints d ∈ D : 

min A s,n ,B s,n ,O 
UB 
s,n 
ε s = 

∑ 

d∈ D 

(
I Data 
s,d − I Model 

s,d 

)2 
(20) 

.t. I Model 
s,d = 

∑ 

n ∈ N s 
γs,n,d · (A s,n · O 

Data 
s,d + B s,n ) , ∀ d ∈ D (8) 

∑ 

 ∈ N s 
γs,n,d = 1 , ∀ d ∈ D (9) 

 = ( A s,n +1 − A s,n ) · O 

UB 
s,n + B s,n +1 − B s,n , ∀ n ∈ N s (10) 

 

UB 
s,n ≥ O 

Data 
s,d · γs,n,d , ∀ n ∈ N s , d ∈ D (11) 

 

UB 
s,n · γs,n +1 ,d ≤ O 

Data 
s,d · γs,n +1 ,d , ∀ n ∈ N s , d ∈ D (12) 

 

Model 
s,d ≥ 0 , ∀ d ∈ D (16) 

 

UB 
s,n ≥ 0 , ∀ n ∈ N s (17) 

he constraints (8) - (12), (16) and (17) of the piecewise-linear re- 

ression problem are the same constraints as in the actual prob- 

em. The objective function (20) of the piecewise-linear regression 

roblem is the sum of squared residuals ε s for each component s, 

erived from constraint (7) of the actual problem. From this regres- 

ion problem, AutoMoG obtains the parameters of the piecewise- 

inear model A s,n , B s,n and the positions of the breakpoints O 

UB 
s,n of 

ach component s . The number of piecewise-linear sections N s is 

xed for each piecewise-linear regression problem. 

Methods for solving the piecewise-linear regression problem 

re available in the literature ( Camponogara and Nazari, 2015; 

ong and Maravelias, 2020; Rebennack and Krasko, 2020; Yang 

t al., 2016; Zhang et al., 2016 ). Here, the piecewise-linear regres- 

ion problem is an MINLP that is solved by applying an existing 

atlab-Toolbox ( D’Errico, 2009 ). The Matlab-Toolbox reformulates 

he MINLP into NLP subproblems and solves the subproblems with 

 local Nonlinear Programming (NLP) solver. The Matlab-Toolbox 

nitializes the positions of the breakpoints for the piecewise-linear 

unctions equidistantly and calculates the sum of squared residuals 

 s . After the initialization, the Matlab-Toolbox minimizes the sum 
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f squared residuals ε s by iteratively changing the positions of the 

reakpoints. The piecewise-linear model of each component s is 

onstrained to be continuous at the breakpoints ( Eq. (10) ). How- 

ver, AutoMoG cannot guarantee to find the globally optimal posi- 

ions of the breakpoints as it uses a local NLP solver for the NLP 

ubproblems. For proof of optimality, the approaches of Kong and 

aravelias (2020) and Rebennack and Krasko (2020) can be used 

nstead of the Matlab-Toolbox. 

Thus, step 1 of AutoMoG provides a continuous piecewise-linear 

odel of each component in the multi-energy system. 

.2. Step 2: Accuracy measure on system level 

After AutoMoG generated a model of each component in step 1, 

ll component models are merged to a model of the multi-energy 

ystem. The accuracy of the multi-energy system model is then as- 

essed. For a sufficiently accurate multi-energy system model, the 

elative error �C rel,System shall be smaller than the allowed relative 

rror δrel of the multi-energy system model: 

C rel,System ≤ δrel . (21) 

he allowed relative error δrel is a user-specified parameter. The 

llowed relative error can be set to δrel = 0 if the user is not able

o specify an appropriate value. In this case, AutoMoG provides an 

ILP model of the multi-energy system that is as accurate as pos- 

ible without overfitting the input-output relationships of the com- 

onents due to the use of the Corrected Akaike Information Crite- 

ion AIC C (cf. Section 3.3 ). 

The only information about the actual multi-energy system is 

he measured input and output data of each component. Thus, 

utoMoG calculates the relative error of the multi-energy system 

odel �C rel,System as 

C rel,System = 

�C System 

∑ 

s ∈ S 
∑ 

d∈ D c 
Input 
s · I Data 

s,d 

. (22) 

C System is the error of the multi-energy system model. I Data 
s,d 

is the 

easured input data of component s and c 
Input 
s is the cost-based 

eighting factor of component s . The error of the multi-energy 

ystem model �C System is the sum of the component model errors 

C s : 

C System = 

∑ 

s 

�C s , (23) 

ith �C s = c Input 
s · √ 

ε s , ∀ s ∈ S. (24) 

n the following, we explain why we use the sum of squared resid- 

als ε s and the cost-based weighting factors c 
Input 
s to calculate the 

omponent model error �C s ( Eq. (24) ). 

.2.1. Sum of squared residuals ε s 
AutoMoG uses the sum of squared residuals ε s to calculate the 

omponent model error �C s of component s ( Eq. (24) ). As a re-

ult, components with many data points tend to have a higher 

omponent model error �C s and, thus, have a higher impact on 

he error of the multi-energy system model �C System ( Eq. (23) ). 

hereby, AutoMoG takes into account that frequently used com- 

onents are more important for the operation of the actual multi- 

nergy system than rarely used components. However, components 

ith many data points are not inherently more important. Thus, 

sing the sum of squared residuals is only meaningful if the num- 

er of data points reflects the importance of the component com- 

ared to other components and not, e.g., only a lack of measured 

ata. Preferentially, the data of all components is measured at the 

ame time interval, using the same time step for the measure- 

ents. Alternative error measures could be used, e.g., the mean 

quared error. If the number of data points is known not to reflect 
5 
he importance of a component, alternative error measures could 

e used, e.g., the mean squared error where the sum of squared 

esiduals is divided by the number of data points for each compo- 

ent. 

.2.2. Cost-based weighting factors c 
Input 
s 

The obtained multi-energy system model is assumed to be used 

or economic optimization. To obtain a targeted model for eco- 

omic optimization, AutoMoG assesses the component model er- 

ors �C s in terms of operating costs. 

However, measured data are commonly not available as operat- 

ng costs. Instead, the consumed and produced energy is measured. 

hus, AutoMoG converts the consumed and produced energy to 

perating costs using cost-based weighting factors c 
Input 
s ( Eq. (24) ). 

he cost-based weighting factors c 
Input 
s enable balancing the com- 

onent model errors �C s in terms of costs. Thereby, AutoMoG in- 

orporates the purpose of the model into the modeling process. 

However, AutoMoG is not limited to generate models for eco- 

omic optimization. Other weighting factors (e.g., primary energy 

actors or CO 2 -eq.) can be implemented easily to obtain an opti- 

ization model targeted for other objective functions. 

.2.3. Determination of cost-based weighting factors c 
Input 
s for a 

ulti-energy system 

The user has to provide a cost-based weighting factor for each 

nergy form that is an input of at least one component in the 

ulti-energy system. In the following, we illustrate the deter- 

ination of cost-based weighting factors for a multi-energy sys- 

em with gas-driven boilers and CHP engines, heat-driven absorp- 

ion chillers, and electricity-driven compression chillers. Thus, cost- 

ased weighting factors are required for gas (input for boilers and 

HP engines), heat (input for absorption chillers), and electricity 

input for compression chillers). 

For components that are driven by energy forms which are pur- 

hased from an external grid (e.g., gas and electricity), we propose 

o choose the specific prices of the energy forms ( c gas and c el ) as

ost-based weighting factors. 

For components that are driven by energy forms which are not 

urchased from an external grid (e.g., heat), we need to deter- 

ine a cost-based weighting factor that approximates the specific 

ost for this energy form in the multi-energy system. In the given 

xample, heat is produced by different components in the multi- 

nergy system, e.g., by CHP engines or boilers. We want to cal- 

ulate one cost-based weighting factor for heat. For this purpose, 

e average the cost of all heat-producing components. This pro- 

edure needs to be applied for every energy form that cannot be 

urchased directly but is used within the energy system. The pro- 

edure can also be adapted when using AutoMoG to generate mod- 

ls of other systems, for example, for any intermediate chemical 

hat is transformed into a desired fuel in chemical plants. 

For heat produced by boiler b, the component-specific cost c heat 
b 

s taken from the operation of nominal load: 

 

heat 
b = 

c gas 

ηnominal 
b 

, ∀ b ∈ B. (25) 

nominal 
b 

is the nominal efficiency of boiler b extracted from mea- 

ured data. For this extraction, we search the data point with the 

aximum heat output. This maximum heat output is divided by 

he corresponding gas input to calculate the nominal efficiency 
nominal 
b 

. 

For heat produced by CHP engine chp, the component-specific 

ost c heat 
chp 

is calculated using the energetic method from The As- 

ociation of German Engineers (2008) . The energetic method allo- 

ates the cost of purchased gas to the produced heat and the pro- 

uced electricity of the CHP engine based on the amount of pro- 
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uced thermal and electrical energy: 

 

heat 
chp = 

c gas 

ηheat 
chp 

+ ηel 
chp 

, ∀ chp ∈ CHP. (26) 

he thermal efficiency ηheat 
chp 

and the electrical efficiency ηel 
chp 

of the 

HP engine are extracted from measured data in the same manner 

s the nominal efficiency ηnominal 
b 

of boiler b. 

The overall cost-based weighting factor c heat for heat in the 

ulti-energy system is calculated from the component-specific 

ost for heat produced by each boiler and CHP engine: 

 

heat = 

∑ 

b 

c heat 
b · Q b 

Q 

System 

+ 

∑ 

chp 

c heat 
chp · Q chp 

Q 

System 

, (27) 

ith Q b and Q chp being the heat amount produced by boiler b and 

HP engine chp, respectively. Q 

System is the overall heat amount 

roduced in the multi-energy system. Q b , Q chp and Q 

System are ex- 

racted from measured data. To calculate the cost-based weight- 

ng factor c heat for heat, the component-specific cost for heat are 

eighted by the amount of produced heat. 

With the determined cost-based weighting factors, we can cal- 

ulate the relative error of the multi-energy system �C rel,System in 

q. (22) . However, the proposed procedure to determine the cost- 

ased weighting factors is not exact. Still, we find that the cost- 

ased weighting factors are important to consider ( Section 4.4 ). 

Now, AutoMoG is able to check the accuracy of the multi- 

nergy system model using Eq. (21) . If the multi-energy system 

odel does not fulfill the desired accuracy measure in Eq. (21) , 

utoMoG increases the number of piecewise-linear sections N in 

he multi-energy system model and, thus, refines one component 

o decrease the relative error of the multi-energy system model 

C rel,System . 

.3. Step 3: Avoid overfitting with the corrected akaike information 

riterion AIC C 

In Step 3, AutoMoG aims to avoid overfitting. For this purpose, 

utoMoG checks the Corrected Akaike Information Criterion AIC C 
or each component, before refining a component. 

Information criteria have been developed to select the most 

uitable model of a data set. The model with the lowest value 

f the used information criterion is selected. Widely known in- 

ormation criteria are, e.g., the Akaike Information Criterion AIC 

 Akaike, 1974 ) or the Bayesian Information Criterion BIC ( Stoica and 

elén, 2004 ). In AutoMoG, we use the Corrected Akaike Informa- 

ion Criterion AIC C ( Hurvich and Tsai, 1993 ) since it is an extension 

f the AIC suitable for small sample sizes. However, other informa- 

ion criteria can be implemented easily in AutoMoG. 

AutoMoG uses the Corrected Akaike Information Criterion 

IC C ,s,i to compare the model of component s from iteration i to 

ts refined model from iteration i + 1 . Thus, if for component s 

I C C ,s,i +1 ≥ AI C C ,s,i (28) 

olds, the improvement in model accuracy does not overcome the 

ncrease in model complexity from iteration i to iteration i + 1 . 

hus, further model refinement of component s would proba- 

ly risk overfitting. Consequently, AutoMoG does not refine any 

omponents for which the Corrected Akaike Information Criterion 

IC C ,s,i increases. Instead, AutoMoG refines only one of the compo- 

ents for which the Corrected Akaike Information Criterion AIC C ,s,i 
ecreases. 

The Corrected Akaike Information Criterion AIC C has been pro- 

osed by Burnham and Anderson (2003) with the assumption of 

ormally distributed errors in the measured data as follows: 

IC C ,s,i = d · ln 

(
ε s 
d 

)
+ 2 K s,i + 

2 K s,i · ( K s,i + 1 ) 

d − K s,i +1 − 1 

∀ s ∈ S, (29) 
6 
ith d being the number of data points and ε s being the sum of 

quared residuals. K s,i is the total number of regression param- 

ters used to describe the model. The first term of the sum in 

q. (29) rewards model accuracy, whereas the other terms of the 

um penalize model complexity. 

AutoMoG terminates if the Corrected Akaike Information Cri- 

erion AIC C ,s,i increases for every component, even if the allowed 

elative error δrel is not reached ( Fig. 1 ). If there is at least one

omponent for which the Corrected Akaike Information Criterion 

IC C ,s,i decreases, AutoMoG proceeds with step 4. 

.4. Step 4: Refine one component 

In the first iteration, AutoMoG solves the piecewise-linear re- 

ression problem for each component s with 1 linear section 

Step 1). In each subsequent iteration i, AutoMoG refines one com- 

onent s by allowing one more linear section in the piecewise- 

inear regression problem of component s : 

 s,i +1 = N s,i + 1 (30) 

ith N s,i being the number of piecewise-linear sections used to 

odel component s in iteration i . 

In step 4, the component to be refined is chosen by identify- 

ng the maximum error reduction. The maximum error reduction 

s the maximum difference between the component model error 

C s (N s,i ) and the component model error in the next refinement 

C s (N s,i +1 ) : 

ax 
s 

( �C s (N s,i ) − �C s (N s,i +1 ) ) . (31) 

hus, the component model error of the refinement �C s (N s + 1) 

as to be known already. Consequently, in the first iteration, Au- 

oMoG has to solve the piecewise-linear regression problem with 

 linear sections for each component. In all subsequent iterations, 

nly one additional piecewise-linear regression problem has to be 

olved for the component s that was refined in the previous itera- 

ion. 

After choosing the component to be refined in step 4, Auto- 

oG refines the chosen component by applying step 1 ( Section 3.1, 

ig. 1 ). AutoMoG terminates once either the allowed relative error 
rel is reached or all components in the multi-energy system would 

e overfitted when further refined. 

. Case study 

In this Section, we apply AutoMoG to a case study based 

oderbauer et al. (2016) . Section 4.1 describes the case study. 

ection 4.2 presents the results AutoMoG. As benchmark approach, 

he common approach is employed where each component is 

odeled independently. In Section 4.3 , we test the performance 

f the generated multi-energy system model in operational opti- 

ization. Section 4.4 shows a sensitivity analysis for the cost-based 

eighting factors used in the case study. Section 4.5 compares the 

erformance of the actual problem and the linearized problem to 

utoMoG. 

.1. Description of the case study 

The case study is based on Goderbauer et al. (2016) , who study 

 real world multi-energy system ( Fig. 2 ). 

The multi-energy system consists of 2 identical boilers, a 

mall and a large CHP engine, a small and a large absorp- 

ion chiller, and 2 identical compression chillers. In their model, 

oderbauer et al. (2016) use nonlinear input-output relationships 

or all components. The boilers, absorption chillers and compres- 

ion chillers are modeled with 1 input and 1 output each: The boil- 

rs are driven by gas and produce heat; the absorption chillers are 
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Fig. 2. Flowsheet of the multi-energy system in the case study. This multi-energy system is modeled by the proposed method AutoMoG. 
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Information Criterion AIC . 
riven by heat and produce cooling; the compression chillers are 

riven by electricity and produce cooling. Thus, for each of these 

omponents, 1 input-output relationship is required. 

However, the CHP engines have 1 input (gas) and 2 outputs 

heat and electricity). Thus, 2 input-output relationships are re- 

uired to model a CHP engine. Goderbauer et al. (2016) model 

oth, gas input and electricity output, as function of heat output: 

 

Model 
chp,d = f 

(
O 

heat 
chp,d 

)
, ∀ chp ∈ CHP, d ∈ D, (32) 

 

el,Model 
chp,d 

= f 
(
O 

heat 
chp,d 

)
, ∀ chp ∈ CHP, d ∈ D. (33) 

ollowing this modeling approach for CHP engines, AutoMoG uses 

s cost-based weighting factors the specific gas price c gas for the 

as input I Model 
chp,d 

and the specific electricity price c el for the elec- 

ricity output O 

el,Model 
chp,d 

. 

In total, 10 piecewise-linear models are required to describe the 

nput-output relationships of the 8 components in the case study 

1 for each boiler, absorption chiller and compression chiller, 2 for 

ach CHP engine). 

To generate a multi-energy system model, AutoMoG requires 

easured input and output data of all modeled components. To 

btain the required input and output data in the case study, we 

imulate 100 load cases of the multi-energy system with the non- 

inear input-output relationships from Goderbauer et al. (2016) . 

he 100 load cases are created by aggregating the demand time- 

eries of heat, cooling and electricity from Goderbauer et al. (2016) . 

he demand time-series of one year with a resolution of 1 h is ag- 

regated to 100 typical time steps, using k-medoids ( Kaufman and 

ousseeuw, 1987 ). The simulation of the 100 typical time steps 

rovides the required input and output data of each component 

or 100 load cases. We use the input and output data of each com- 

onent from the simulation and add normally distributed noise in 

 range of ±5 % of the simulated values. The thus obtained noisy 

ata are used as measured input and output data in the case study. 

To apply AutoMoG, we have to choose a value for the allowed 

elative error δrel of the multi-energy system model. For this pur- 

ose, we calculate the relative error of the multi-energy system 

odel �C rel,System with the nonlinear input-output relationships 

rom Goderbauer et al. (2016) compared to the obtained noisy data. 
7 
e choose this relative error of the multi-energy system model as 

he allowed relative error δrel . Aiming for a higher accuracy than 

he actual functional relationship is not reasonable. However, if a 

eaningful allowed relative error δrel is not available, we recom- 

end to set the allowed relative error δrel = 0 . In such cases, Au- 

oMoG still provides a meaningful model as the Corrected Akaike 

nformation Criterion AIC C discourages overfitting ( Section 3.3 ). 

.2. Results of the case study 

The AutoMoG method is applied to the case study ( Section 4.1 ). 

utoMoG provides a multi-energy system model for the case study 

hat reaches the allowed relative error δrel . To reach the allowed 

elative error δrel , AutoMoG needs 4 iterations and less than one 

inute. The multi-energy system model uses 14 piecewise-linear 

ections to describe the input-output relationships of all compo- 

ents. The solution provided by AutoMoG is a feasible solution for 

he actual problem ( Eq. (5) - (19) ). 

In common practice, each component of a multi-energy system 

s modeled independently. Thus, we compare the results of Auto- 

oG to the independent modeling of each component. In indepen- 

ent modeling of each component, the relative error of the multi- 

nergy system �C rel,System cannot be evaluated during model gen- 

ration. Thus, to ensure that the relative error of the multi-energy 

ystem �C rel,System is lower than the allowed relative error δrel , the 

elative error of each component �I rel 
s has to be lower or equal 

han the allowed relative error δrel : 

I rel 
s = 

√ 

ε s ∑ 

d I 
Data 
s,d 

≤ δrel , ∀ s ∈ S, (34) 

ith ε s being the sum of squared residuals of component s and 

 

Data 
s,d 

being the input of component s in data point d. In inde- 

endent modeling, the only way to guarantee the fulfillment of 

q. (34) is to ignore the Corrected Akaike Information Criterion 

IC C . However, ignoring the Corrected Akaike Information Criterion 

IC C may lead to overfitting. Thus, we generate 2 models of the 

ulti-energy system with independent modeling: 

• Independent modeling: we ignore the Corrected Akaike Infor- 

mation Criterion AIC C 
• Independent modeling ( AIC C ): we apply the Corrected Akaike 
C 
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Table 2 

Solution times of operational optimization for all 5 instances and all 3 models. We im- 

plemented the operational optimization problems in Python and solved them with Gurobi 

9.0.0 ( Gurobi Optimization, LLC, 2020 ). 

Instance 1 2 3 4 5 ∅ 

AutoMoG 32 s 31 s 32 s 31 s 31 s 31 s 

Independent modeling 1595 s 1674 s 1566 s 1546 s 1505 s 1577 s 

Ind. modeling ( AIC C ) 438 s 533 s 603 s 452 s 588 s 523 s 
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Note that the cost-based weighting factors c s are not used for 

ndependent modeling because the relative errors of the compo- 

ents �I rel 
s are not compared to each other. 

In the case study, independent modeling needs 31 piecewise- 

inear sections to reach �I rel 
s ≤ δrel for each component s . Inde- 

endent modeling ( AIC C ) uses 23 piecewise-linear sections and 

oes not reach �I rel 
s ≤ δrel for 2 components. Thus, AutoMoG pro- 

ides an MILP model of the multi-energy system that needs signif- 

cantly less piecewise-linear sections than both models from inde- 

endent modeling (14 vs. 31 and 23, respectively). Still, the multi- 

nergy system model provided by AutoMoG is sufficiently accu- 

ate and satisfies the error criterion for the multi-energy system 

C rel,System ≤ δrel . 

Fig. 3 exemplary shows the models of AutoMoG and inde- 

endent modeling for a compression chiller and the large CHP 

ngine. The models are compared to the original models from 

oderbauer et al. (2016) and the measured data. AutoMoG uses 

 linear sections to represent the input-output relationship of the 

ompression chiller (cf. Fig. 3 (a)), whereas independent modeling 

ses 3 linear sections in both models (cf. Fig. 3 (c) and (e)). The

 models seem appropriate to represent the input-output relation- 

hip of the compression chiller, and from visual inspect none of the 

odels is obviously the better model. However, the accuracy mea- 

ured on the system level in AutoMoG reveals that 2 linear sections 

re sufficient for the model of the compression chiller. 

For the model of the large CHP engine, AutoMoG uses 1 lin- 

ar section, whereas independent modeling uses 10 linear sections 

nd, thereby, obviously overfits the input-output relationship of 

he large CHP engine (cf. Fig. 3 (d)). The independent modeling is 

verfitting due to the need to reach the allowed relative error δrel 

or each component. If we discourage overfitting by the Corrected 

kaike Information Criterion AIC C in independent modeling, the 

odel of the large CHP engine is modeled with 3 linear sections 

cf. Fig. 3 (f)). This finding shows that the Corrected Akaike Infor- 

ation Criterion AIC C is powerful to prevent overfitting. Still, even 

ith the Corrected Akaike Information Criterion AIC C independent 

odeling increases model complexity strongly compared to Auto- 

oG (1 vs. 3 linear sections). 

.3. Model performance in operational optimization 

The multi-energy system model is generated for efficient oper- 

tional optimization. Thus, we test the model performance by an- 

lyzing the solution times of the models. 

For this purpose, we solve 5 instances of operational optimiza- 

ion problems with the models from AutoMoG, independent mod- 

ling and independent modeling ( AIC C ). 

The original demand time-series of heat, cooling and electricity 

rom Goderbauer et al. (2016) consist of 1 year with an hourly res- 

lution. Thus, the original demand time-series contains 8760 time 

teps. We create 5 instances of the original demand time-series 

ith latin-hypercube sampling ( McKay et al., 20 0 0 ) and variations 

f ±5 % of the original demands. 

The AutoMoG model is the fastest model for all instances (cf. 

able 2 ). As expected, the model from independent modeling is 

he slowest for all instances as it contains the most piecewise- 
8 
inear sections and thus the most binary variables compared to 

he other two models. On average, the AutoMoG model solves the 

perational optimization problems more than 50 times faster than 

ndependent modeling. Even compared to independent modeling 

 AIC C ), the AutoMoG model solves more than 15 times faster on 

verage. The solution times show that AutoMoG generates efficient 

odels for operational optimization. 

Additionally, we test the model performance by analyzing how 

ell the models predict the operating cost OP EX . For this purpose, 

e perform a 5-fold cross-validation for the already used 100 op- 

rating points. 

For the 5-fold cross-validation, the 100 operating points are 

plit into 5 data sets of equal size. Afterwards, 4 data sets are used 

or model generation and the remaining data set is used as the test 

et. Thus, each data set is used once as test set. 

As accuracy measure for the cross-validation, we use the rel- 

tive difference in operating cost for each operating point d

OP EX rel 
d 

: 

OP EX 

rel 
d = 

OP EX 

Data 
d 

− OP EX 

Model 
d 

OP EX 

Data 
d 

∀ d ∈ D. (35) 

ith OP EX Data 
d 

being the operating cost of the multi-energy system 

ccording to the measured data and OP EX Model 
d 

being the operating 

ost of the multi-energy system according to the tested model. 

The 5-fold cross-validation is applied to the AutoMoG model 

nd both models from independent modeling of each component 

cf. Table 3 ). 

The results of the 5-fold cross-validation show that AutoMoG 

ses less piecewise-linear sections in each test set (16 linear sec- 

ions on average in the models of AutoMoG compared to 37.2 

n average in independent modeling and 24.6 on average in in- 

ependent modeling ( AIC C )). However, still, AutoMoG reduces the 

ean relative difference in operating cost between model and data 

OP EX rel by approx. 20% from 0.98% to 0.78%. Furthermore, Au- 

oMoG reaches the same mean relative difference in operating 

ost as independent modeling ( AIC C ), although AutoMoG uses less 

iecewise-linear sections. Thus, in the case study, it is not neces- 

ary to model each component as accurate as possible to reach an 

ccurate representation of the multi-energy system. 

.4. Sensitivity analysis of the cost-based weighting factors 

In this section, we perform a sensitivity analysis of the cost- 

ased weighting factors to show that they are important. At the 

ame time, we find that the cost-based weighting factors do not 

eed to be calculated with high accuracy. 

The cost-based weighting factors essentially sort the compo- 

ents by importance. In the case study ( Section 4.1 and 4.2 ), we

se as weighting factors for gas c gas = 0 . 06 € /kWh, for electricity 

 

el = 0 . 16 € /kWh and for heat c heat = 0 . 071 € /kWh. Thus, the er- 

ors of components that use electricity as input are weighted more 

han two times higher than the errors of components that use gas 

r heat as an input. AutoMoG needs 4 iterations and, thus, per- 

orms 4 refinements in total for the 10 piecewise-linear models. 

he 4 refinements are: 1. large absorption chiller, 2. small absorp- 

ion chiller, 3. a compression chiller, 4. a boiler. 
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Fig. 3. Derived models of a compression chiller (a,c,e) and the large CHP engine (b,d,f) in the case study. The models from AutoMoG are shown in red (a), (b) and the 

models from independent modeling of each component are shown in blue (c), (d) and black, respectively (e), (f). The models are compared to the original model from 

Goderbauer et al. (2016) (grey dashed line) and the measured data (grey crosses). Independent modeling of each component shows overfitting for the large CHP engine (d). 

If the Corrected Akaike Information Criterion AIC C is applied to independent modeling, overfitting can be prevented. Still, AutoMoG uses less linear sections to model the 

large CHP engine. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Results of the 5-fold cross-validation for the case study. �OPEX rel is the mean relative difference in operating cost between model and 

data. N is the number of piecewise-linear sections in the multi-energy system model. 

Test set 1 2 3 4 5 ∅ 

�OPEX rel / % AutoMoG 0.93 0.91 0.76 0.55 0.74 0.78 

Independent modeling 0.95 0.95 1.11 0.71 1.19 0.98 

Ind. modeling ( AIC C ) 0.79 0.78 0.86 0.77 0.70 0.78 

N AutoMoG 16 15 17 16 16 16 

Independent modeling 34 35 40 32 45 37.2 

Ind. modeling ( AIC C ) 26 21 24 27 25 24.6 

9 
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Table 4 

Results of solving the actual problem with different MINLP solvers without starting solution and with the AutoMoG 

solution as starting solution. 

Solver No starting solution Starting solution from AutoMoG 

SCIP MINLP is infeasible Starting solution is feasible 

Starting solution is optimal 

BARON MINLP is infeasible Starting solution is feasible 

Starting solution is optimal 

DICOPT No feasible solution found Starting solution is feasible 

within Iteration Limit of 

200 

No better solution found 

within Iteration Limit of 200 

BONMINH Terminated by solver - 

Fig. 4. Derived model of the large CHP engine and an absorption chiller from AutoMoG (red) and from the linearized problem (green). Furthermore, the original models 

from Goderbauer et al. (2016) (grey dashed line) and the measured data (grey crosses) are presented. The solution of the linearized problem uses more linear sections and 

shows discontinuities at the breakpoints. Thus, the solution of the linearized problem is not a feasible solution of the actual problem. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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For a sensitivity analysis of the cost-based weighting factors, we 

hange each of the 3 weighting factors by ±20 % and run AutoMoG 

nce for each changed weighting factor. In each of the 6 additional 

uns, AutoMoG refines the same 4 components. However, the or- 

er of refinement changes, when we increase the weighting factor 

or electricity to c el = 0 . 192 € /kWh or reduce the weighting factor 

or heat to c heat = 0 . 057 € /kWh. In these 2 cases, a compression 

hiller is refined before the small absorption chiller is refined. 

In another additional run, we ignore the weighting factors. 

hus, the errors of all components have the same weight, inde- 

endently of the input of the components. In this case, AutoMoG 

efines the models of the following 4 components in the following 

rder: 1. large absorption chiller, 2. small absorption chiller, 3. 

 boiler, 4. another boiler. We can see that the compression chiller 
10 
s refined only when we use the cost-based weighting factors. 

hus, the cost-based weighting factors show that economically 

t makes sense to refine the compression chiller since electricity 

s more valuable than gas. If we ignore the weighting factors, 

ifferent com ponents are refined. Refining different com ponents 

eads to a different model of the overall multi-energy system. 

The sensitivity analysis shows that the weighting factors decide 

hich components are refined in which order. However, chang- 

ng the weighting factors by ±20 % does not fundamentally change 

he results of the case study, which leads us to the conclusion 

hat a rough estimation of the weighting factors is sufficient. In 

ummary, we conclude that cost-based weighting factors are im- 

ortant if their values significantly differ for the input energy 

orms. 
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.5. Computational study of the actual problem 

AutoMoG is essentially a primal heuristic for the actual problem 

 Eq. (5) - (19) ) using problem decomposition to find a good feasible

olution. However, there is no proof that the AutoMoG solution is 

ptimal. Furthermore, the AutoMoG solution is only feasible for the 

ctual problem if AutoMoG terminates because the allowed relative 

rror δrel is reached. The allowed relative error δrel is not reached 

f AutoMoG stops because all components would be overfitted 

hen further refined. In this case, the AutoMoG solution is infea- 

ible for the actual problem because the allowed relative error δrel 

annot be reached, and the corresponding constraint ( Eq. (6) ) is 

iolated. 

To assess the solution quality and the performance of the Au- 

oMoG method, we implemented the actual problem ( Eq. (5) - (19) )

nd the linearization of the actual problem (cf. Section 2 ) for the 

ase study in GAMS. In the linearization of the actual problem, we 

ollowed the approach of Yang et al. (2016) , i.e., we used absolute 

rrors instead of squared residuals and ignored the constraints that 

nforce continuity at the breakpoints of the piecewise-linear func- 

ions. Thus, the linearization does not guarantee continuity at the 

reakpoints, which leads to different component models. Still, we 

earn about the performance of the MILP approach compared to 

utoMoG. 

To solve the actual problem, we used the MINLP solvers 

CIP ( Gleixner et al., 2018 ), BARON ( Tawarmalani and Sahini- 

is, 2005 ), DICOPT ( Kocis and Grossmann, 1989 ) and BONMINH 

 COIN-OR (Project Manager P. Bonami), 2016 ). All MINLP solvers 

ere used with default subsolvers and default settings, if not 

tated otherwise. The default subsolvers and default settings can 

e found in the solver manuals of the GAMS documentation 

 GAMS Development Corporation, 2016 ). Each run of the actual 

roblem with an MINLP solver was executed without a time limit. 

None of the used MINLP solvers were able to find any feasi- 

le solution for the actual problem (cf. Table 4 ). The solvers SCIP 

nd BARON even identified the actual problem as infeasible. How- 

ver, we showed that the AutoMoG solution is feasible for the ac- 

ual problem by using the AutoMoG solution as starting solution 

or SCIP, BARON and DICOPT. Even with the AutoMoG solution as 

tarting solution, none of the used MINLP solvers was able to find 

nother solution than the AutoMoG solution (cf. Table 4 ). 

Thus, solving the actual problem with standard MINLP solvers 

s impractical and even impossible for the present case study. 

To solve the linearized problem, we used CPLEX 12.6.0.1 

 IBM Cooperation, 2016 ) with a time limit of 48 h. CPLEX reached

he time limit with a best feasible solution of 17 piecewise-linear 

ections for the multi-energy system model (the AutoMoG solution 

ses 14 piecewise-linear sections). 

In Fig. 4 , we compare the models of the large CHP engine and

n absorption chiller derived by AutoMoG and by the linearized 

roblem. Within the time limit of 48 h, the best model found by 

he linearized problem has 3 linear sections for the large CHP en- 

ine and shows discontinuities (cf. Fig. 4 (c)), whereas AutoMoG 

nds a model for the large CHP engine with 1 linear section within 

 min (cf. Fig. 4 (a)). The AutoMoG model of the large CHP engine

s obviously more appropriate to represent the input-output rela- 

ionship of the large CHP engine than the model derived by the 

inearized problem. For the model of the absorption chiller, the so- 

ution of linearized problem uses 3 linear sections (cf. Fig. 4 (d)), 

hereas AutoMoG uses 2 linear sections (cf. Fig. 4 (b)). 

In summary, even with the stated simplifications, we could 

ot find a better solution of the linearized problem within 48 h 

han the solution AutoMoG finds within 1 min. In contrast to the 

utoMoG solution, the solution of the linearized problem is not 

easible for the actual problem, because the solution of the lin- 

arized problem shows discontinuities at the breakpoints of the 
11 
iecewise-linear models (cf. Fig. 4 ). If we used the approaches of 

ong and Maravelias (2020) and Rebennack and Krasko (2020) for 

he linearized problem, we could overcome the problem of discon- 

inuities at the breakpoints. Since these methods further contrain 

he solutions presented in this work, we do not expect a signifi- 

antly improved performance for the linearized problem. However, 

t would certainly be interesting to explore these methods in fu- 

ure work. Neither the actual problem nor the linearized problem 

s applicable in practice. In summary, we showed that the method 

utoMoG provides an accurate and computationally efficient model 

f the multi-energy system in short time. 

. Conclusions 

The AutoMoG method is proposed for automated data-driven 

odel generation of multi-energy systems using piecewise-linear 

egression. AutoMoG decomposes the data-driven model genera- 

ion problem of a multi-energy system to one model generation 

roblem of each component. Still, the error of model generation 

s evaluated for the overall multi-energy system. For this purpose, 

utoMoG uses cost-based weighting factors to balance the errors 

aused by each component model. Through the decomposition, Au- 

oMoG provides an accurate solution for the data-driven model 

eneration problem of the multi-energy system in short time. The 

olution provided by AutoMoG is an MILP model of the multi- 

nergy system that is usable for optimization. 

In the case study, AutoMoG needs significantly less piecewise- 

inear sections (57% on average) to reach an allowed model error 

ompared to the commonly employed independent modeling of 

ach component. As a result, the model of AutoMoG solves the op- 

rational optimization more than 50 times faster on average. Still, 

he models from AutoMoG are more accurate (20% on average) in 

erms of operating cost than the models provided by independent 

odeling of each component. 

The results of the case study show that it is not mandatory to 

odel each component with high accuracy to reach an accurate 

ulti-energy system model. Instead, each component’s modeling 

rror should be seen in context of the multi-energy system model. 

The proposed method AutoMoG is only applicable if measured 

nput and output data of the components are available. In its 

resent form, AutoMoG is limited to systems that contain com- 

onents with one independent variable. For example, variable- 

peed pumps cannot be modeled, since the consumed power of 

 variable-speed pump depends on two independent variables, i.e., 

ts rotational speed and volume flow. However, in principle, Auto- 

oG should be extendable to handle components with more than 

ne independent variable, which is currently explored. 

AutoMoG is an easy-to-use method to generate efficient MILP 

odels. Furthermore, AutoMoG is not limited to generate mod- 

ls of multi-energy systems but can generate models of any engi- 

eering system. AutoMoG drastically decreases the effort for data- 

riven model generation, enabling a wider spread of optimization 

odels in real-world applications. 
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ppendix A. Nomenclature 

variables 

symbol explanation unit 

A s,n gradient of linear section n - 

B s,n intercept of linear section n kW 

I Model 
s,d 

input value of the model of component s for the data 

point d

kW 

N number of linear sections in the overall multi-energy 

system model 

- 

N s number of linear sections used to model component s - 

N max 
s maximum number of linear sections to model 

component s 

- 

O UB 
s,n upper bound for the output value of linear section n kW 

�C System error of the multi-energy system model €
�C s component model error €
�I rel 

s relative error of component s - 

γs,n,d binary variable to assign data points to linear sections - 

εs sum of squared residuals kW 

2 

κs,n binary variable to denote if the linear section n is 

used 

- 

parameters 

symbol explanation unit 

a s,n gradient of the linear section n - 

AIC C Corrected Akaike Information Criterion - 

b s,n intercept of the linear section n kW 

c Input 
s cost-based weighting factor for input of component s € /kW 

c el cost-based weighting factor for electricity € /kW 

c gas cost-based weighting factor for gas € /kW 

c heat cost-based weighting factor for heat € /kW 

c heat 
b 

specific cost for heat produced by boiler b € /kW 

c heat 
chp 

specific cost for heat produced by CHP engine chp € /kW 

| D | number of data points - 

I Data 
s,d 

input value of the data point d of the component s kW 

K s,i total number of regression parameters to model 

component s 

- 

m Big-M parameter - 

O Data 
s,d 

output value of the data point d of the component s kW 

OPEX operating cost €
OPEX Data 

d 
operating cost according to measured data €

OPEX Model 
d 

operating cost according to tested model €
Q b amount of heat produced by boiler b kWh 

Q chp amount of heat produced by CHP engine chp kWh 

Q System amount of heat produced in the multi-energy system kWh 

δrel predefined relative error of the multi-energy system - 

�OPEX rel 
d 

relative difference in operating cost - 

�OPEX rel mean relative difference in operating cost - 

ηnominal 
b 

nominal efficiency of boiler b - 

ηel 
chp 

electrical efficiency of CHP engine chp - 

ηheat 
chp 

thermal efficiency of CHP engine chp - 

sets and elements 

symbol explanation 

b ∈ B boiler 

chp ∈ CHP combined heat and power engine 

d ∈ D measured data point 

i number of iteration in AutoMoG 

n ∈ N linear section 

s ∈ S component 
12 
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