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ABSTRACT

Operational optimization of multi-energy systems requires a mathematical model that is accurate and
computationally efficient. A model can be generated in a data-driven way if measured data is available.
Commonly, data is then used to model each component of the multi-energy system independently. How-
ever, independent modeling of each component may lead to models that are unnecessarily complicated
and, thus, inefficient in practice.

In this work, we propose the method AutoMoG for Automated data-driven Model Generation of multi-
energy systems using piecewise-linear regression. AutoMoG provides Mixed-Integer Linear Programming
models of multi-energy systems. To accurately model the overall multi-energy system, AutoMoG balances
the errors caused by each component. Model accuracy is measured in terms of operating cost.

In a case study, AutoMoG provides a multi-energy system model with less linear sections than single-
component regression Still, AutoMoG retains high accuracy. Thereby, AutoMoG enables efficient data-

driven modeling as the basis for multi-energy system optimization.

© 2020 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Multi-energy systems usually consist of multiple components
such as combined-heat-and-power (CHP) engines or absorption
chillers. The components may be very different. The interaction
of these different components leads to complex behavior on the
system level. Due to the complex behavior of multi-energy sys-
tems, optimal operation usually requires mathematical optimiza-
tion (Mancarella, 2014). The resulting operational optimization
problem is challenging. Goderbauer et al. (2019) show that the op-
erational optimization problem of multi-energy systems is weakly
NP-hard, even for a single load case. As these challenging opera-
tional optimization problems have to be solved frequently in prac-
tice, the underlying models of the multi-energy systems need to
be computationally efficient. However, it is challenging to generate
multi-energy system models that are both accurate and computa-
tionally efficient (Mitsos et al., 2018).
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In general, two approaches are followed to generate multi-
energy system models: first-principles modeling and data-driven
modeling. First-principles models are derived from theory with the
aim to represent the real physical behavior of a system or com-
ponent (Smolin et al., 2019). However, solving full first-principles
models often is computationally demanding (McBride and Sund-
macher, 2019). Furthermore, frequently the physical behavior of
the system is partly unknown, which prevents full first-principles
modeling.

The other possibility to generate a multi-energy system model
is data-driven modeling. Data-driven models are derived from
data with the aim to represent the input-output relationship of
a system (McBride and Sundmacher, 2019). Measured data is in-
creasingly available in multi-energy systems, in particular, due to
the implementation of energy management systems according to
ISO 50001:2018 (2018). Thus, data-driven model generation for
multi-energy systems becomes increasingly promising.

In a multi-energy system, measured input and output data can
be used to generate a data-driven model of each component. The
measured data is used to regress the input-output relationship
of each component. The regression approximates a functional re-
lationship between independent input variables and output vari-
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ables from a given data set (Yang et al., 2016). For regression,
many approaches are available such as linear regression, kriging
(Kleijnen and Beers, 2004), support-vector regression (Smola and
Scholkopf, 2004) or neural networks (Huang et al., 2010).

In operational optimization, the generated model will usu-
ally be solved repeatedly. Thus, the regression analysis should
yield a model that is computationally efficient. At the same time,
the model has to be sufficiently accurate. To generate accurate
and computationally efficient models, Cozad et al. (2014) and
Wilson and Sahinidis (2017) presented a framework for automated
learning of algebraic models (ALAMO). ALAMO provides black-box
models from data obtained by simulation or experiments. Infor-
mation criteria are used to find simple models with sufficient
accuracy. However, the resulting model is in general nonlinear.
Thus, if this nonlinear model is used for operational optimization,
the problem will usually be a Mixed-Integer Nonlinear Program
(MINLP). In practice, MINLPs are still challenging to solve to global
optimality (Mitsos et al., 2018).

Commonly, nonlinearities are therefore approximated by
piecewise-linear models leading to Mixed-Integer Linear Pro-
grams (MILPs) (Zhang et al.,, 2016; Gao et al., 2018; Voll et al,,
2013). MILPs can be efficiently solved to global optimality
with commercial state-of-the-art solvers. Methods are avail-
able to generate piecewise-linear models from measured data:
Zhang et al. (2016) proposed a data-driven algorithm to generate
surrogate models of process systems. The generated surrogate
models are piecewise linear in convex regions and, thus, can
be used in MILPs. Yang et al. (2016) and Gkioulekas and Papa-
georgiou (2018) provided a mathematical programming approach
for piecewise-linear regression. The piecewise-linear regression
models are obtained by solving MILP regression problems. MILP re-
gression problems minimize the least distances between data and
model to retain linearity. Recently, Kong and Maravelias (2020) and
Rebennack and Krasko (2020) proposed formulations to model
continuous piecewise-linear regression problems as MILPs. The
provided models are piecewise linear and, thus, can be used in
MILPs.

The reviewed methods could solve the piecewise-linear regres-
sion problem for any component in a multi-energy system. How-
ever, modeling each component of a multi-energy system indepen-
dently may lead to an overall model of the multi-energy system
that is unnecessarily complicated and, thus, computationally inef-
ficient.

Thus, in this work, we propose the method AutoMoG for
Automated data-driven Model Generation of multi-energy sys-
tems. AutoMoG solves a data-driven model generation problem
for multi-energy systems, while balancing the errors caused by
each component’s model in the overall model of the multi-energy
system. The model of the multi-energy system is assumed to be
used for an economic optimization. Thus, cost-based weighting fac-
tors are used to determine the impact of each component’s model
error on the error of the multi-energy system model. AutoMoG
terminates once a predefined accuracy of the multi-energy sys-
tem model is achieved. However, if the predefined accuracy is
not achievable, AutoMoG avoids overfitting by using the Corrected
Akaike Information Criterion AICc (Hurvich and Tsai, 1993). Au-
toMoG provides an MILP model of the multi-energy system with
continuous representation of the components’ input-output rela-
tionship.

In Section 2, we formulate the data-driven model generation
problem for multi-energy systems. In Section 3, we describe the
proposed method AutoMoG. In Section 4, we apply AutoMoG to a
case study for a decentralized multi-energy system from literature.
In Section 5, we conclude with the key findings.
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2. Data-driven model generation for multi-energy systems

The data-driven model generation problem for multi-energy
systems shall provide a sufficiently accurate and computationally
efficient MILP model of the multi-energy system. In the provided
MILP model, the input-output relationship of each component s € S
in the multi-energy system has to be represented by a piecewise-
linear model.

In general, the functional relationship between input Is (e.g. gas
or electricity) and output Os (e.g. heating or cooling) of a compo-
nent s (e.g. boiler or compression chiller) is nonlinear. For MILP op-
timization models, nonlinear functional relationships are approxi-
mated by piecewise-linear functions IM°d¢!(Q; ). Here, we choose
to model the input [Model 35 Jinear function of the output Os, be-
cause we can easily convert the input to operating cost. This con-
version is crucial for the AutoMoG method; more details are given
in Section 3.2. However, AutoMoG can be easily adapted to model
the output as function of the input.

Iévmdd = Z Nsn - (@sn - Os + bsn) (1)
n
Os.n > 055 1+ Nsn Y neN (2)
Os.n < 098 - M5 n V neN 3)
Y nen =1 (4)
n

with [Medel being the modeled input of component s and N be-
ing the number of piecewise-linear sections n of component s. The
parameter as, denotes the gradient of linear section n and the pa-
rameter bs, denotes the intercept of linear section n. The binary
variable ns, is equal to 1, if and only if the output Os, lies in be-
tween the upper bound oY of the linear section n and the upper
bound 02271 of the lower linear section n — 1. Eq. (4) ensures that
the output Os, lies on maximum one linear section n.

We assume that an MILP model with fewer binary variables can
be more efficiently solved. This assumption is often made in prac-
tice (Katz et al., 2020). The number of binary variables in the MILP
model rises with the number of piecewise-linear sections. Thus,
the objective of the data-driven model generation is to identify the
minimal number of piecewise-linear sections N for a multi-energy
system model with a given accuracy.

The resulting structure of the data-driven model-generation
problem for multi-energy systems is the following:

min number of piecewise-linear sections in multi-energy system

model (Eq. (5))
s.t. the multi-energy system model fulfills a given accuracy

(Eq. (6))
the multi-energy system model is fitted to measured data
(Eq. (7))
the component models are piecewise linear (Eq. (8)-(9))
the piecewise-linear models are continuous (Eq. (10)-(13))
2 equations to count all piecewise-linear sections
(Eq. (14)-(15))

The mathematical formulation of the data-driven model-
generation problem for multi-energy systems is given in Eq. (5)-
(19):

S
min ~ N=) "N (5)
S
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Table 1
List of all variables and parameters of the actual problem given
in Eq. (5)-(19).

Variables N, Ny, ACSystem [Model 1y, Aqn. Bs.n O%8. Ksn
Parameters 8", ¢"P, [Pata oPata D[, m
st ACSEm gl 3OS e o (6)

seS deD

ACSYstem _ Z anput . /Z(Iggta _ I;Yldodel)z (7)
seS deD

Ié\,/ldOdel — Z Vsnd * (As,n . Oggta + Bs,n)y

neNmax

Z Vsnd =1,

neNMax

VseSdeD (8)

VseSdeD (9)

0= Ksnt1- [(As,n+1 —Asn) - OEE + Bsni1 — Bs.n],
VseS ne N (10)

VseSneN"™,deD (11)

UB Data
Osn = Os,d “Vsind-

On + Vsnira < ngm *Vsnt+1.d VseSneN™ deD (12)

0< (0%, —0%) Kksn1. VseSneN™ (13)
Ksn > % Y Venar  VseSneNm™ (14)
| | deD
Ns= > Ksn. VseS (15)
neNgax
[Model >0, VseSdeD (16)
0% >0, V seS neNmx (17)
Asn,Bsn <m - kg p, VseS neN"™ (18)
Asn,Bsn > —m - Ksp, VseS neN"™ (19)

In the following, we refer to the data-driven model generation
problem for multi-energy systems (Eq. (5)-(19)) as the actual prob-
lem. We state the variables and parameters of the actual problem
in Table 1.

d e D is a measured data point. c" is a cost-based weight-
ing factor and depends on the type of input for component s. Dif-
ferent components of the multi-energy system may have different
forms of input (e.g., gas for a boiler, but electricity for a compres-
sion chiller). By using cost-based weighting factors c""*, we con-
vert the different forms of input to operating costs. We show in
Section 3.2 how we determine cost-based weighting factors c"P"*
for a typical multi-energy system. N"®* is the maximum number of
piecewise-linear section allowed to model component s. The binary
variable ks, denotes whether linear section n is used to model
component s. The binary variable y; , ; denotes whether data point
d is assigned to linear section n of component s. A , is the gradient
and Bs ; is the intercept of linear section n in the piecewise-linear
model of component s.
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The objective of the actual problem is to minimize the num-
ber of piecewise-linear sections N within the multi-energy sys-
tem model (Eq. (5)). Constraints (6)-(7) restrict the sum of squared
residuals of all data points d and components s to be smaller than
the product of the predefined relative error of the multi-energy
system &' and the sum of the cost of all measured input data.
Here, the sum of squared residuals of all data points d of com-
ponent s are weighted by the cost-based weighting factor c;. Con-
straints (8) evaluate the piecewise-linear models at each data point
d for each component s. Constraints (9) ensure that each data point
d is assigned to exactly one linear section n for each component
s. Constraints (10) force the piecewise-linear models to be con-
tinuous at the breakpoints. Constraints (11)-(13) define the vari-
ables for the upper bound OE_E of each linear section n and arrange
the linear sections in ascending order. Constraints (14) ensure that
the linear section n is chosen to model component s, if at least
one data point d is assigned to the linear section n. Constraints
(15) sum up the number of chosen linear sections for each com-
ponent s. Constraints (16)-(17) ensure Ig‘f‘;de‘ and OY8 to be positive
variables. Constraints (18)-(19) assign the value O to the variables
As.n and B j; if linear section n is not selected for component s. The
constrains use a Big-M formulation with the Big-M value m.

The actual problem is an MINLP problem. The nonlinear char-
acter of the actual problem results from Eq. (7), (8), (10) and
(13). Solving the actual problem is computationally demanding.
We implemented the actual problem in GAMS (GAMS Develop-
ment Corporation, 2016) and tried to solve the actual problem with
state-of-the-art MINLP solvers (SCIP (Gleixner et al., 2018), BARON
(Tawarmalani and Sahinidis, 2005), DICOPT (Kocis and Gross-
mann, 1989) and BONMINH (COIN-OR (Project Manager P. Bonami),
2016)). The MINLP solvers could not even find a feasible solution
for a typically sized industrial multi-energy system (Section 4.5).
The MINLP solvers ran without a time limit. 2 solvers wrongly con-
sidered the problem infeasible, 1 solver terminated without a so-
lution and 1 solver reached an iteration limit. Thus, solving the ac-
tual problem is impractical in applications.

However, the actual problem can be rendered computation-
ally feasible by 2 possibilities: One possibility is to linearize the
actual problem (MINLP) to an MILP, based on the formulation
by Yang et al. (2016). This linearization introduces a few short-
comings: Squared residuals can no longer be employed in an
MILP (Eq. (7)). Absolute residuals are calculated instead. Further-
more, the resulting piecewise-linear models are in general not
continuous, because the nonlinear continuity constraint cannot
be considered in an MILP (Eq. (10)). Recently, Kong and Mar-
avelias (2020) and Rebennack and Krasko (2020) reformulated the
nonlinear continuity constraint into a set of linear constraints.
However, we show in Section 4.5 that the performance of the lin-
earized problem is not always satisfying for practical applications
even if the continuity constraint is ignored. Thus, in general, the
solution of the linearized problem is not a feasible solution of the
actual problem. Therefore, solving the linearized problem is not al-
ways satisfying for practical applications. Thus, there is a need for
a solution method that provides a solution of the actual problem
in a short time.

This need leads to the second possibility: decomposing the ac-
tual problem and solving the decomposed problem. For this pur-
pose, we propose the decomposition method AutoMoG in this
work. AutoMoG provides a solution of the actual problem in a
short time and, thus, is suitable for practical applications.

3. AutoMoG: Automated data-driven model generation of
multi-energy systems

AutoMoG decomposes the actual problem (Eq. (5)-(19)) to
piecewise-linear regression problems for each component in a
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Step 1 (Sec. 3.1)
Piecewise linear

regression for
each component

Start

Step 4 (Sec. 3.4)

Refine one
component

Piecewise
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Step 2 (Sec. 3.2)

rel,System el
ACT < g

linear
model

AIC. worsens in each
possible refinement

Fig. 1. Proposed method AutoMoG for automated model generation using measured data. AC™*YS®®™ js the relative error of the multi-energy system model (Section 3.2).
'l is the allowed relative error of the multi-energy system model. The Corrected Akaike Information Criterion AIC. is checked to avoid overfitting.

multi-energy system. AutoMoG iteratively increases the accuracy of
the multi-energy system model by increasing the number of linear
sections N (Fig. 1).

In the following, we briefly outline the AutoMoG method, be-
fore we explain the steps of AutoMoG in detail.

Step 1: For each component s, AutoMoG performs a least-
squares regression between measured input and output data with
a predefined number of linear sections N"#* (Section 3.1). The re-
sulting piecewise-linear models IM°d€l Q) are suitable for an MILP
model of the multi-energy system.

Step 2: The error of the multi-energy system model is evaluated
(Section 3.2). For evaluation, AutoMoG uses a cost-based weighting
factor c™Ut to determine the impact of a component’s error on the
error of the multi-energy system model. The cost-based weighting
factor c™* depends on the input of a component, because Auto-
MoG models the input as a function of the output (Eq. (1)). We de-
scribe how to determine the cost-based weighting factors c!"™* in
Section 3.2. AutoMoG terminates if the relative error of the multi-
energy system model ACTelSYstem js smaller than or equal to the
allowed relative error 8™,

Step 3: If the relative error of the multi-energy system model
AcrelSystem exceeds the allowed relative error 8!, AutoMoG checks
the Corrected Akaike Information Criterion AIC. (Hurvich and
Tsai, 1993). The Corrected Akaike Information Criterion AIC is used
for model selection by capturing the trade-off between model ac-
curacy and model complexity. If the information criterion AIC.
worsens for the refinement of a component, overfitting might oc-
cur. Thus, AutoMoG does not refine any component for which the
information criterion AIC. worsens. AutoMoG terminates if the in-
formation criterion AIC. worsens for the refinement of all possible
components. If AutoMoG terminates in Step 3, the allowed relative
error 8™ is not reached, but the measured data do not allow a
more accurate model of the multi-energy system without the risk
of overfitting.

Step 4: AutoMoG chooses one component to be refined based
on the maximum error reduction in the multi-energy system
model. For this purpose, AutoMoG calculates the error reduction in
the multi-energy system model for the refinement of each compo-
nent (Section 3.4). For the chosen component, AutoMoG increases
the number of piecewise-linear sections by 1 and applies step 1 to
the chosen component.

If the allowed relative error §™! is reached, AutoMoG provides
a fully parameterized MILP model of the multi-energy system. Au-
toMoG aims to find the minimal number of piecewise-linear sec-
tions N to accurately represent the multi-energy system. However,
AutoMoG cannot guarantee to provide the model with the minimal
number of piecewise-linear sections N.

In the following, we explain the steps of AutoMoG in detail.

3.1. Step 1: Piecewise-linear regression for each component

AutoMoG solves a piecewise-linear regression problem for each
component s € S separately, minimizing the sum of squared resid-
uals &s. The squared residuals between the modeled Input [Model
and the measured Input Ifgm are summed up for all measured data
points d € D:

minAs,,,,Bs_,.,Og{ﬁgs - Z (Is[,)?lta _ IQAdOdel)z (20)
deD
st M0 =3 yena (Asn O3 +Bsy),  VdeD (8)
neNg

> Vsna=1, VdeD (9)
neNg

0= (Asny1 —Asn) - OEE + Bsnt1 — Bsns Vn e Ns (10)
098 > 0% ysng.  VneNs,deD (11)
Oyg “VYsn+1d = 023“‘ *VYs.n+l.ds VYneNs,deD (12)
Model >0, VdeD (16)
0% >0, Vn e N (17)

The constraints (8)-(12), (16) and (17) of the piecewise-linear re-
gression problem are the same constraints as in the actual prob-
lem. The objective function (20) of the piecewise-linear regression
problem is the sum of squared residuals & for each component s,
derived from constraint (7) of the actual problem. From this regres-
sion problem, AutoMoG obtains the parameters of the piecewise-
linear model A, Bs;n and the positions of the breakpoints OEE of
each component s. The number of piecewise-linear sections Ns is
fixed for each piecewise-linear regression problem.

Methods for solving the piecewise-linear regression problem
are available in the literature (Camponogara and Nazari, 2015;
Kong and Maravelias, 2020; Rebennack and Krasko, 2020; Yang
et al,, 2016; Zhang et al.,, 2016). Here, the piecewise-linear regres-
sion problem is an MINLP that is solved by applying an existing
Matlab-Toolbox (D’Errico, 2009). The Matlab-Toolbox reformulates
the MINLP into NLP subproblems and solves the subproblems with
a local Nonlinear Programming (NLP) solver. The Matlab-Toolbox
initializes the positions of the breakpoints for the piecewise-linear
functions equidistantly and calculates the sum of squared residuals
&s. After the initialization, the Matlab-Toolbox minimizes the sum



A. Kamper, L. Leenders, B. Bahl et al.

of squared residuals ¢ by iteratively changing the positions of the
breakpoints. The piecewise-linear model of each component s is
constrained to be continuous at the breakpoints (Eq. (10)). How-
ever, AutoMoG cannot guarantee to find the globally optimal posi-
tions of the breakpoints as it uses a local NLP solver for the NLP
subproblems. For proof of optimality, the approaches of Kong and
Maravelias (2020) and Rebennack and Krasko (2020) can be used
instead of the Matlab-Toolbox.

Thus, step 1 of AutoMoG provides a continuous piecewise-linear
model of each component in the multi-energy system.

3.2. Step 2: Accuracy measure on system level

After AutoMoG generated a model of each component in step 1,
all component models are merged to a model of the multi-energy
system. The accuracy of the multi-energy system model is then as-
sessed. For a sufficiently accurate multi-energy system model, the
relative error AC™"YS®™ shal] be smaller than the allowed relative
error 8™ of the multi-energy system model:

ACrel,System < 8rel' (21)

The allowed relative error 8™ is a user-specified parameter. The
allowed relative error can be set to ™! = 0 if the user is not able
to specify an appropriate value. In this case, AutoMoG provides an
MILP model of the multi-energy system that is as accurate as pos-
sible without overfitting the input-output relationships of the com-
ponents due to the use of the Corrected Akaike Information Crite-
rion AICc (cf. Section 3.3).

The only information about the actual multi-energy system is
the measured input and output data of each component. Thus,
AutoMoG calculates the relative error of the multi-energy system
model ACTEhSystem g
ACrel,System _ ACSystem . (22)

Yses Daen &P IE i

ACYS®™ is the error of the multi-energy system model. IE;“ is the

measured input data of component s and ¢ is the cost-based

weighting factor of component s. The error of the multi-energy
system model ACYS®®™ js the sum of the component model errors
AGs:

ACY™ = 3 A, (23)
N

with AG =c™". /&, VseS. (24)

In the following, we explain why we use the sum of squared resid-
uals &5 and the cost-based weighting factors c™"* to calculate the

component model error ACs (Eq. (24)).

3.2.1. Sum of squared residuals &

AutoMoG uses the sum of squared residuals &5 to calculate the
component model error AC; of component s (Eq. (24)). As a re-
sult, components with many data points tend to have a higher
component model error AC and, thus, have a higher impact on
the error of the multi-energy system model ACSYS®®™ (Eq. (23)).
Thereby, AutoMoG takes into account that frequently used com-
ponents are more important for the operation of the actual multi-
energy system than rarely used components. However, components
with many data points are not inherently more important. Thus,
using the sum of squared residuals is only meaningful if the num-
ber of data points reflects the importance of the component com-
pared to other components and not, e.g., only a lack of measured
data. Preferentially, the data of all components is measured at the
same time interval, using the same time step for the measure-
ments. Alternative error measures could be used, e.g., the mean
squared error. If the number of data points is known not to reflect
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the importance of a component, alternative error measures could
be used, e.g., the mean squared error where the sum of squared
residuals is divided by the number of data points for each compo-
nent.

3.2.2. Cost-based weighting factors cI""t

The obtained multi-energy system model is assumed to be used
for economic optimization. To obtain a targeted model for eco-
nomic optimization, AutoMoG assesses the component model er-
rors AGs in terms of operating costs.

However, measured data are commonly not available as operat-
ing costs. Instead, the consumed and produced energy is measured.
Thus, AutoMoG converts the consumed and produced energy to
operating costs using cost-based weighting factors cﬁ“p”t (Eq. (24)).
The cost-based weighting factors c™"* enable balancing the com-
ponent model errors ACs in terms of costs. Thereby, AutoMoG in-
corporates the purpose of the model into the modeling process.

However, AutoMoG is not limited to generate models for eco-
nomic optimization. Other weighting factors (e.g., primary energy
factors or CO,-eq.) can be implemented easily to obtain an opti-
mization model targeted for other objective functions.

3.2.3. Determination of cost-based weighting factors c"™* for a
multi-energy system

The user has to provide a cost-based weighting factor for each
energy form that is an input of at least one component in the
multi-energy system. In the following, we illustrate the deter-
mination of cost-based weighting factors for a multi-energy sys-
tem with gas-driven boilers and CHP engines, heat-driven absorp-
tion chillers, and electricity-driven compression chillers. Thus, cost-
based weighting factors are required for gas (input for boilers and
CHP engines), heat (input for absorption chillers), and electricity
(input for compression chillers).

For components that are driven by energy forms which are pur-
chased from an external grid (e.g., gas and electricity), we propose
to choose the specific prices of the energy forms (c#5 and c®) as
cost-based weighting factors.

For components that are driven by energy forms which are not
purchased from an external grid (e.g., heat), we need to deter-
mine a cost-based weighting factor that approximates the specific
cost for this energy form in the multi-energy system. In the given
example, heat is produced by different components in the multi-
energy system, e.g., by CHP engines or boilers. We want to cal-
culate one cost-based weighting factor for heat. For this purpose,
we average the cost of all heat-producing components. This pro-
cedure needs to be applied for every energy form that cannot be
purchased directly but is used within the energy system. The pro-
cedure can also be adapted when using AutoMoG to generate mod-
els of other systems, for example, for any intermediate chemical
that is transformed into a desired fuel in chemical plants.

For heat produced by boiler b, the component-specific cost clgeat
is taken from the operation of nominal load:

c8as
Cheat _

b ™ nominal ’
M

V beB. (25)

ppominal s the nominal efficiency of boiler b extracted from mea-
sured data. For this extraction, we search the data point with the
maximum heat output. This maximum heat output is divided by
the corresponding gas input to calculate the nominal efficiency
nlr;ominal.

For heat produced by CHP engine chp, the component-specific
cost C?ﬁ;t is calculated using the energetic method from The As-
sociation of German Engineers (2008). The energetic method allo-
cates the cost of purchased gas to the produced heat and the pro-
duced electricity of the CHP engine based on the amount of pro-
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duced thermal and electrical energy:

ds
Chﬁat — c®
chp heat el ’
nchp + nchp

V chp € CHP. (26)

The thermal efficiency n?,f;t and the electrical efficiency ng}w of the
CHP engine are extracted from measured data in the same manner
as the nominal efficiency n°minal of boiler b.

The overall cost-based weighting factor c"®2 for heat in the
multi-energy system is calculated from the component-specific
cost for heat produced by each boiler and CHP engine:

cheat _ Z Cl};eat . Q +
b

QSystem Cheat QChP (27)

pres chp QSystem

with Qp and Qg being the heat amount produced by boiler b and
CHP engine chp, respectively. QSYs®™ s the overall heat amount
produced in the multi-energy system. Qp, Qg and QSystem gre ex-
tracted from measured data. To calculate the cost-based weight-
ing factor chea for heat, the component-specific cost for heat are
weighted by the amount of produced heat.

With the determined cost-based weighting factors, we can cal-
culate the relative error of the multi-energy system AC™Ys®™ jp
Eq. (22). However, the proposed procedure to determine the cost-
based weighting factors is not exact. Still, we find that the cost-
based weighting factors are important to consider (Section 4.4).

Now, AutoMoG is able to check the accuracy of the multi-
energy system model using Eq. (21). If the multi-energy system
model does not fulfill the desired accuracy measure in Eq. (21),
AutoMoG increases the number of piecewise-linear sections N in
the multi-energy system model and, thus, refines one component

to decrease the relative error of the multi-energy system model
ACrel,System

3.3. Step 3: Avoid overfitting with the corrected akaike information
criterion AIC¢

In Step 3, AutoMoG aims to avoid overfitting. For this purpose,
AutoMoG checks the Corrected Akaike Information Criterion AICc
for each component, before refining a component.

Information criteria have been developed to select the most
suitable model of a data set. The model with the lowest value
of the used information criterion is selected. Widely known in-
formation criteria are, e.g., the Akaike Information Criterion AIC
(Akaike, 1974) or the Bayesian Information Criterion BIC (Stoica and
Selén, 2004). In AutoMoG, we use the Corrected Akaike Informa-
tion Criterion AIC¢ (Hurvich and Tsai, 1993) since it is an extension
of the AIC suitable for small sample sizes. However, other informa-
tion criteria can be implemented easily in AutoMoG.

AutoMoG uses the Corrected Akaike Information Criterion
AlC¢; to compare the model of component s from iteration i to
its refined model from iteration i + 1. Thus, if for component s

AlCc i = AlCc 5 ; (28)

holds, the improvement in model accuracy does not overcome the
increase in model complexity from iteration i to iteration i+ 1.
Thus, further model refinement of component s would proba-
bly risk overfitting. Consequently, AutoMoG does not refine any
components for which the Corrected Akaike Information Criterion
AlCc ¢ ; increases. Instead, AutoMoG refines only one of the compo-
nents for which the Corrected Akaike Information Criterion AICc  ;
decreases.

The Corrected Akaike Information Criterion AICc has been pro-
posed by Burnham and Anderson (2003) with the assumption of
normally distributed errors in the measured data as follows:

2K ;- (Ks;+1)
d—Ksipq1 -1

Es

: Vses, (29)

AICCQSJ' =d- lﬂ( ) + 21(5,,' +
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with d being the number of data points and &5 being the sum of
squared residuals. Kg; is the total number of regression param-
eters used to describe the model. The first term of the sum in
Eq. (29) rewards model accuracy, whereas the other terms of the
sum penalize model complexity.

AutoMoG terminates if the Corrected Akaike Information Cri-
terion AICc;; increases for every component, even if the allowed
relative error 8™ is not reached (Fig. 1). If there is at least one
component for which the Corrected Akaike Information Criterion
AlCc ¢ ; decreases, AutoMoG proceeds with step 4.

3.4. Step 4: Refine one component

In the first iteration, AutoMoG solves the piecewise-linear re-
gression problem for each component s with 1 linear section
(Step 1). In each subsequent iteration i, AutoMoG refines one com-
ponent s by allowing one more linear section in the piecewise-
linear regression problem of component s:

Ns,i+1 = Ns.i +1 (30)

with Ng; being the number of piecewise-linear sections used to
model component s in iteration i.

In step 4, the component to be refined is chosen by identify-
ing the maximum error reduction. The maximum error reduction
is the maximum difference between the component model error
AGs(Ns ;) and the component model error in the next refinement
ACG(Ng1.1):

max (AGs(Ng;) — AG(Niyi1)). (31)

Thus, the component model error of the refinement AC;(Ns+ 1)
has to be known already. Consequently, in the first iteration, Au-
toMoG has to solve the piecewise-linear regression problem with
2 linear sections for each component. In all subsequent iterations,
only one additional piecewise-linear regression problem has to be
solved for the component s that was refined in the previous itera-
tion.

After choosing the component to be refined in step 4, Auto-
MoG refines the chosen component by applying step 1 (Section 3.1,
Fig. 1). AutoMoG terminates once either the allowed relative error
8'el is reached or all components in the multi-energy system would
be overfitted when further refined.

4. Case study

In this Section, we apply AutoMoG to a case study based
Goderbauer et al. (2016). Section 4.1 describes the case study.
Section 4.2 presents the results AutoMoG. As benchmark approach,
the common approach is employed where each component is
modeled independently. In Section 4.3, we test the performance
of the generated multi-energy system model in operational opti-
mization. Section 4.4 shows a sensitivity analysis for the cost-based
weighting factors used in the case study. Section 4.5 compares the
performance of the actual problem and the linearized problem to
AutoMoG.

4.1. Description of the case study

The case study is based on Goderbauer et al. (2016), who study
a real world multi-energy system (Fig. 2).

The multi-energy system consists of 2 identical boilers, a
small and a large CHP engine, a small and a large absorp-
tion chiller, and 2 identical compression chillers. In their model,
Goderbauer et al. (2016) use nonlinear input-output relationships
for all components. The boilers, absorption chillers and compres-
sion chillers are modeled with 1 input and 1 output each: The boil-
ers are driven by gas and produce heat; the absorption chillers are
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Fig. 2. Flowsheet of the multi-energy system in the case study. This multi-energy system is modeled by the proposed method AutoMoG.

driven by heat and produce cooling; the compression chillers are
driven by electricity and produce cooling. Thus, for each of these
components, 1 input-output relationship is required.

However, the CHP engines have 1 input (gas) and 2 outputs
(heat and electricity). Thus, 2 input-output relationships are re-
quired to model a CHP engine. Goderbauer et al. (2016) model
both, gas input and electricity output, as function of heat output:

Iposel = f(Opeat,). V chp e CHP, d €D, (32)

el,Model __ heat
Ochp,d - f(ochp,d)’

Following this modeling approach for CHP engines, AutoMoG uses

as cost-based weighting factors the specific gas price c&° for the

gas input Igﬁgd;‘ and the specific electricity price c¢! for the elec-

V chp e CHP, d e D. (33)

P el,Model
tricity output Ochp, d

In total, 10 piecewise-linear models are required to describe the
input-output relationships of the 8 components in the case study
(1 for each boiler, absorption chiller and compression chiller, 2 for
each CHP engine).

To generate a multi-energy system model, AutoMoG requires
measured input and output data of all modeled components. To
obtain the required input and output data in the case study, we
simulate 100 load cases of the multi-energy system with the non-
linear input-output relationships from Goderbauer et al. (2016).
The 100 load cases are created by aggregating the demand time-
series of heat, cooling and electricity from Goderbauer et al. (2016).
The demand time-series of one year with a resolution of 1 h is ag-
gregated to 100 typical time steps, using k-medoids (Kaufman and
Rousseeuw, 1987). The simulation of the 100 typical time steps
provides the required input and output data of each component
for 100 load cases. We use the input and output data of each com-
ponent from the simulation and add normally distributed noise in
a range of £5 % of the simulated values. The thus obtained noisy
data are used as measured input and output data in the case study.

To apply AutoMoG, we have to choose a value for the allowed
relative error 8™ of the multi-energy system model. For this pur-
pose, we calculate the relative error of the multi-energy system
model AC™YS®™ with the nonlinear input-output relationships
from Goderbauer et al. (2016) compared to the obtained noisy data.

We choose this relative error of the multi-energy system model as
the allowed relative error §™!. Aiming for a higher accuracy than
the actual functional relationship is not reasonable. However, if a
meaningful allowed relative error §™! is not available, we recom-
mend to set the allowed relative error 8™ = 0. In such cases, Au-
toMoG still provides a meaningful model as the Corrected Akaike
Information Criterion AICc discourages overfitting (Section 3.3).

4.2. Results of the case study

The AutoMoG method is applied to the case study (Section 4.1).
AutoMoG provides a multi-energy system model for the case study
that reaches the allowed relative error 8™l To reach the allowed
relative error 8!, AutoMoG needs 4 iterations and less than one
minute. The multi-energy system model uses 14 piecewise-linear
sections to describe the input-output relationships of all compo-
nents. The solution provided by AutoMoG is a feasible solution for
the actual problem (Eq. (5)-(19)).

In common practice, each component of a multi-energy system
is modeled independently. Thus, we compare the results of Auto-
MoG to the independent modeling of each component. In indepen-
dent modeling of each component, the relative error of the multi-
energy system AC™MYS®™ cannot be evaluated during model gen-
eration. Thus, to ensure that the relative error of the multi-energy
system AC™LSYS®M js lower than the allowed relative error 8!, the
relative error of each component AI'! has to be lower or equal
than the allowed relative error §!:

_VE <8™  Vses, (34)
Il

with &5 being the sum of squared residuals of component s and
IES“ being the input of component s in data point d. In inde-
pendent modeling, the only way to guarantee the fulfillment of
Eq. (34) is to ignore the Corrected Akaike Information Criterion
AICc. However, ignoring the Corrected Akaike Information Criterion
AIC: may lead to overfitting. Thus, we generate 2 models of the
multi-energy system with independent modeling:

Alrel _
=

o Independent modeling: we ignore the Corrected Akaike Infor-
mation Criterion AICc

¢ Independent modeling (AICc): we apply the Corrected Akaike
Information Criterion AICc.
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Solution times of operational optimization for all 5 instances and all 3 models. We im-
plemented the operational optimization problems in Python and solved them with Gurobi

9.0.0 (Gurobi Optimization, LLC, 2020).

Instance 1 2 3 4 5 %]
AutoMoG 32s 31s 32s 31s 31s 31s
Independent modeling  1595s 1674s 1566s 1546s 1505s 1577 s
Ind. modeling (AICc) 438 s 533 s 603 s 452 s 588 s 523 s

Note that the cost-based weighting factors ¢ are not used for
independent modeling because the relative errors of the compo-
nents Al are not compared to each other.

In the case study, independent modeling needs 31 piecewise-
linear sections to reach Alsrel < 8™ for each component s. Inde-
pendent modeling (AICc) uses 23 piecewise-linear sections and
does not reach A’ < §™! for 2 components. Thus, AutoMoG pro-
vides an MILP model of the multi-energy system that needs signif-
icantly less piecewise-linear sections than both models from inde-
pendent modeling (14 vs. 31 and 23, respectively). Still, the multi-
energy system model provided by AutoMoG is sufficiently accu-
rate and satisfies the error criterion for the multi-energy system
ACrel,System < 5rel.

Fig. 3 exemplary shows the models of AutoMoG and inde-
pendent modeling for a compression chiller and the large CHP
engine. The models are compared to the original models from
Goderbauer et al. (2016) and the measured data. AutoMoG uses
2 linear sections to represent the input-output relationship of the
compression chiller (cf. Fig. 3(a)), whereas independent modeling
uses 3 linear sections in both models (cf. Fig. 3(c) and (e)). The
3 models seem appropriate to represent the input-output relation-
ship of the compression chiller, and from visual inspect none of the
models is obviously the better model. However, the accuracy mea-
sured on the system level in AutoMoG reveals that 2 linear sections
are sufficient for the model of the compression chiller.

For the model of the large CHP engine, AutoMoG uses 1 lin-
ear section, whereas independent modeling uses 10 linear sections
and, thereby, obviously overfits the input-output relationship of
the large CHP engine (cf. Fig. 3(d)). The independent modeling is
overfitting due to the need to reach the allowed relative error §!
for each component. If we discourage overfitting by the Corrected
Akaike Information Criterion AICc in independent modeling, the
model of the large CHP engine is modeled with 3 linear sections
(cf. Fig. 3(f)). This finding shows that the Corrected Akaike Infor-
mation Criterion AICc is powerful to prevent overfitting. Still, even
with the Corrected Akaike Information Criterion AIC: independent
modeling increases model complexity strongly compared to Auto-
MoG (1 vs. 3 linear sections).

4.3. Model performance in operational optimization

The multi-energy system model is generated for efficient oper-
ational optimization. Thus, we test the model performance by an-
alyzing the solution times of the models.

For this purpose, we solve 5 instances of operational optimiza-
tion problems with the models from AutoMoG, independent mod-
eling and independent modeling (AIC¢).

The original demand time-series of heat, cooling and electricity
from Goderbauer et al. (2016) consist of 1 year with an hourly res-
olution. Thus, the original demand time-series contains 8760 time
steps. We create 5 instances of the original demand time-series
with latin-hypercube sampling (McKay et al., 2000) and variations
of +5% of the original demands.

The AutoMoG model is the fastest model for all instances (cf.
Table 2). As expected, the model from independent modeling is
the slowest for all instances as it contains the most piecewise-

linear sections and thus the most binary variables compared to
the other two models. On average, the AutoMoG model solves the
operational optimization problems more than 50 times faster than
independent modeling. Even compared to independent modeling
(AIC¢), the AutoMoG model solves more than 15 times faster on
average. The solution times show that AutoMoG generates efficient
models for operational optimization.

Additionally, we test the model performance by analyzing how
well the models predict the operating cost OPEX. For this purpose,
we perform a 5-fold cross-validation for the already used 100 op-
erating points.

For the 5-fold cross-validation, the 100 operating points are
split into 5 data sets of equal size. Afterwards, 4 data sets are used
for model generation and the remaining data set is used as the test
set. Thus, each data set is used once as test set.

As accuracy measure for the cross-validation, we use the rel-
ative difference in operating cost for each operating point d
AOPEXe!:

OPEXData _ OPEXMode!

OPEXE“& Vd e D.

(35)

AOPEX!® =

with OPEXdD""ta being the operating cost of the multi-energy system

according to the measured data and OPEX('}""del being the operating
cost of the multi-energy system according to the tested model.

The 5-fold cross-validation is applied to the AutoMoG model
and both models from independent modeling of each component
(cf. Table 3).

The results of the 5-fold cross-validation show that AutoMoG
uses less piecewise-linear sections in each test set (16 linear sec-
tions on average in the models of AutoMoG compared to 37.2
on average in independent modeling and 24.6 on average in in-
dependent modeling (AIC:)). However, still, AutoMoG reduces the
mean relative difference in operating cost between model and data
AOPEXtel by approx. 20% from 0.98% to 0.78%. Furthermore, Au-
toMoG reaches the same mean relative difference in operating
cost as independent modeling (AICc), although AutoMoG uses less
piecewise-linear sections. Thus, in the case study, it is not neces-
sary to model each component as accurate as possible to reach an
accurate representation of the multi-energy system.

4.4. Sensitivity analysis of the cost-based weighting factors

In this section, we perform a sensitivity analysis of the cost-
based weighting factors to show that they are important. At the
same time, we find that the cost-based weighting factors do not
need to be calculated with high accuracy.

The cost-based weighting factors essentially sort the compo-
nents by importance. In the case study (Section 4.1 and 4.2), we
use as weighting factors for gas ¢8 = 0.06 € /[kWh, for electricity
¢ = 0.16 € [kWh and for heat cheat = 0.071 € [kWh. Thus, the er-
rors of components that use electricity as input are weighted more
than two times higher than the errors of components that use gas
or heat as an input. AutoMoG needs 4 iterations and, thus, per-
forms 4 refinements in total for the 10 piecewise-linear models.
The 4 refinements are: 1. large absorption chiller, 2. small absorp-
tion chiller, 3. a compression chiller, 4. a boiler.
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Fig. 3. Derived models of a compression chiller (a,c.e) and the large CHP engine (b,d,f) in the case study. The models from AutoMoG are shown in red (a), (b) and the
models from independent modeling of each component are shown in blue (c), (d) and black, respectively (e), (f). The models are compared to the original model from
Goderbauer et al. (2016) (grey dashed line) and the measured data (grey crosses). Independent modeling of each component shows overfitting for the large CHP engine (d).
If the Corrected Akaike Information Criterion AIC. is applied to independent modeling, overfitting can be prevented. Still, AutoMoG uses less linear sections to model the
large CHP engine. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3

Results of the 5-fold cross-validation for the case study. AOPEX'™! is the mean relative difference in operating cost between model and

data. N is the number of piecewise-linear sections in the multi-energy system model.

Test set

1

2

3 4 5 2]
AOPEXrel /% AutoMoG 0.93 0.91 0.76 0.55 0.74 0.78
Independent modeling 0.95 0.95 1.11 0.71 1.19 0.98
Ind. modeling (AICc) 0.79 0.78 0.86 0.77 0.70 0.78

N AutoMoG 16 15 17 16 16 16
Independent modeling 34 35 40 32 45 37.2
Ind. modeling (AICc) 26 21 24 27 25 24.6
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Results of solving the actual problem with different MINLP solvers without starting solution and with the AutoMoG

solution as starting solution.

Solver No starting solution Starting solution from AutoMoG
SCIP MINLP is infeasible Starting solution is feasible
Starting solution is optimal
BARON MINLP is infeasible Starting solution is feasible
Starting solution is optimal
DICOPT No feasible solution found Starting solution is feasible
within Iteration Limit of No better solution found
200 within Iteration Limit of 200
BONMINH Terminated by solver -
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(a) Model of the large CHP engine. (b) Model of an absorption chiller.
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(c) Model of the large CHP engine.
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(d) Model of an absorption chiller.

Fig. 4. Derived model of the large CHP engine and an absorption chiller from AutoMoG (red) and from the linearized problem (green). Furthermore, the original models
from Goderbauer et al. (2016) (grey dashed line) and the measured data (grey crosses) are presented. The solution of the linearized problem uses more linear sections and
shows discontinuities at the breakpoints. Thus, the solution of the linearized problem is not a feasible solution of the actual problem. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

For a sensitivity analysis of the cost-based weighting factors, we
change each of the 3 weighting factors by +20% and run AutoMoG
once for each changed weighting factor. In each of the 6 additional
runs, AutoMoG refines the same 4 components. However, the or-
der of refinement changes, when we increase the weighting factor
for electricity to c¢! = 0.192 € /kWh or reduce the weighting factor
for heat to cheat = 0.057 € /kWh. In these 2 cases, a compression
chiller is refined before the small absorption chiller is refined.

In another additional run, we ignore the weighting factors.
Thus, the errors of all components have the same weight, inde-
pendently of the input of the components. In this case, AutoMoG
refines the models of the following 4 components in the following
order: 1. large absorption chiller, 2. small absorption chiller, 3.
a boiler, 4. another boiler. We can see that the compression chiller

10

is refined only when we use the cost-based weighting factors.
Thus, the cost-based weighting factors show that economically
it makes sense to refine the compression chiller since electricity
is more valuable than gas. If we ignore the weighting factors,
different components are refined. Refining different components
leads to a different model of the overall multi-energy system.

The sensitivity analysis shows that the weighting factors decide
which components are refined in which order. However, chang-
ing the weighting factors by +£20% does not fundamentally change
the results of the case study, which leads us to the conclusion
that a rough estimation of the weighting factors is sufficient. In
summary, we conclude that cost-based weighting factors are im-
portant if their values significantly differ for the input energy
forms.
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4.5. Computational study of the actual problem

AutoMoG is essentially a primal heuristic for the actual problem
(Eq. (5)-(19)) using problem decomposition to find a good feasible
solution. However, there is no proof that the AutoMoG solution is
optimal. Furthermore, the AutoMoG solution is only feasible for the
actual problem if AutoMoG terminates because the allowed relative
error 8™ is reached. The allowed relative error 8! is not reached
if AutoMoG stops because all components would be overfitted
when further refined. In this case, the AutoMoG solution is infea-
sible for the actual problem because the allowed relative error 8!
cannot be reached, and the corresponding constraint (Eq. (6)) is
violated.

To assess the solution quality and the performance of the Au-
toMoG method, we implemented the actual problem (Eq. (5)-(19))
and the linearization of the actual problem (cf. Section 2) for the
case study in GAMS. In the linearization of the actual problem, we
followed the approach of Yang et al. (2016), i.e., we used absolute
errors instead of squared residuals and ignored the constraints that
enforce continuity at the breakpoints of the piecewise-linear func-
tions. Thus, the linearization does not guarantee continuity at the
breakpoints, which leads to different component models. Still, we
learn about the performance of the MILP approach compared to
AutoMoG.

To solve the actual problem, we used the MINLP solvers
SCIP (Gleixner et al., 2018), BARON (Tawarmalani and Sahini-
dis, 2005), DICOPT (Kocis and Grossmann, 1989) and BONMINH
(COIN-OR (Project Manager P. Bonami), 2016). All MINLP solvers
were used with default subsolvers and default settings, if not
stated otherwise. The default subsolvers and default settings can
be found in the solver manuals of the GAMS documentation
(GAMS Development Corporation, 2016). Each run of the actual
problem with an MINLP solver was executed without a time limit.

None of the used MINLP solvers were able to find any feasi-
ble solution for the actual problem (cf. Table 4). The solvers SCIP
and BARON even identified the actual problem as infeasible. How-
ever, we showed that the AutoMoG solution is feasible for the ac-
tual problem by using the AutoMoG solution as starting solution
for SCIP, BARON and DICOPT. Even with the AutoMoG solution as
starting solution, none of the used MINLP solvers was able to find
another solution than the AutoMoG solution (cf. Table 4).

Thus, solving the actual problem with standard MINLP solvers
is impractical and even impossible for the present case study.

To solve the linearized problem, we used CPLEX 12.6.0.1
(IBM Cooperation, 2016) with a time limit of 48 h. CPLEX reached
the time limit with a best feasible solution of 17 piecewise-linear
sections for the multi-energy system model (the AutoMoG solution
uses 14 piecewise-linear sections).

In Fig. 4, we compare the models of the large CHP engine and
an absorption chiller derived by AutoMoG and by the linearized
problem. Within the time limit of 48 h, the best model found by
the linearized problem has 3 linear sections for the large CHP en-
gine and shows discontinuities (cf. Fig. 4 (c¢)), whereas AutoMoG
finds a model for the large CHP engine with 1 linear section within
1 min (cf. Fig. 4 (a)). The AutoMoG model of the large CHP engine
is obviously more appropriate to represent the input-output rela-
tionship of the large CHP engine than the model derived by the
linearized problem. For the model of the absorption chiller, the so-
lution of linearized problem uses 3 linear sections (cf. Fig. 4 (d)),
whereas AutoMoG uses 2 linear sections (cf. Fig. 4 (b)).

In summary, even with the stated simplifications, we could
not find a better solution of the linearized problem within 48 h
than the solution AutoMoG finds within 1 min. In contrast to the
AutoMoG solution, the solution of the linearized problem is not
feasible for the actual problem, because the solution of the lin-
earized problem shows discontinuities at the breakpoints of the

1
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piecewise-linear models (cf. Fig. 4). If we used the approaches of
Kong and Maravelias (2020) and Rebennack and Krasko (2020) for
the linearized problem, we could overcome the problem of discon-
tinuities at the breakpoints. Since these methods further contrain
the solutions presented in this work, we do not expect a signifi-
cantly improved performance for the linearized problem. However,
it would certainly be interesting to explore these methods in fu-
ture work. Neither the actual problem nor the linearized problem
is applicable in practice. In summary, we showed that the method
AutoMoG provides an accurate and computationally efficient model
of the multi-energy system in short time.

5. Conclusions

The AutoMoG method is proposed for automated data-driven
model generation of multi-energy systems using piecewise-linear
regression. AutoMoG decomposes the data-driven model genera-
tion problem of a multi-energy system to one model generation
problem of each component. Still, the error of model generation
is evaluated for the overall multi-energy system. For this purpose,
AutoMoG uses cost-based weighting factors to balance the errors
caused by each component model. Through the decomposition, Au-
toMoG provides an accurate solution for the data-driven model
generation problem of the multi-energy system in short time. The
solution provided by AutoMoG is an MILP model of the multi-
energy system that is usable for optimization.

In the case study, AutoMoG needs significantly less piecewise-
linear sections (57% on average) to reach an allowed model error
compared to the commonly employed independent modeling of
each component. As a result, the model of AutoMoG solves the op-
erational optimization more than 50 times faster on average. Still,
the models from AutoMoG are more accurate (20% on average) in
terms of operating cost than the models provided by independent
modeling of each component.

The results of the case study show that it is not mandatory to
model each component with high accuracy to reach an accurate
multi-energy system model. Instead, each component’s modeling
error should be seen in context of the multi-energy system model.

The proposed method AutoMoG is only applicable if measured
input and output data of the components are available. In its
present form, AutoMoG is limited to systems that contain com-
ponents with one independent variable. For example, variable-
speed pumps cannot be modeled, since the consumed power of
a variable-speed pump depends on two independent variables, i.e.,
its rotational speed and volume flow. However, in principle, Auto-
MoG should be extendable to handle components with more than
one independent variable, which is currently explored.

AutoMoG is an easy-to-use method to generate efficient MILP
models. Furthermore, AutoMoG is not limited to generate mod-
els of multi-energy systems but can generate models of any engi-
neering system. AutoMoG drastically decreases the effort for data-
driven model generation, enabling a wider spread of optimization
models in real-world applications.
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Appendix A. Nomenclature

variables

symbol explanation unit

Asn gradient of linear section n -

Bs.n intercept of linear section n kw

Is"f';de‘ input value of the model of component s for the data kW
point d

N number of linear sections in the overall multi-energy -
system model

Ns number of linear sections used to model component s -

Njnax maximum number of linear sections to model -
component §

os upper bound for the output value of linear sectionn kW

ACSystem error of the multi-energy system model €

AGs component model error €

Al relative error of component s -

Vond binary variable to assign data points to linear sections -

€ sum of squared residuals kw2

Ks.n binary variable to denote if the linear section n is -
used

parameters

symbol explanation unit

Gsn gradient of the linear section n -

AlCc Corrected Akaike Information Criterion -

bs n intercept of the linear section n kW

clput cost-based weighting factor for input of components € [kW

ce! cost-based weighting factor for electricity € [kW

8 cost-based weighting factor for gas € [kW

cheat cost-based weighting factor for heat € [kW

C{J‘“‘ specific cost for heat produced by boiler b € [kW

c?,f;‘ specific cost for heat produced by CHP engine chp € [kW

|D| number of data points -

IE;“‘ input value of the data point d of the component s kW

K total number of regression parameters to model -

component s

m Big-M parameter -

OE;“’ output value of the data point d of the component s kw

OPEX operating cost €

OPEX‘?ata operating cost according to measured data €

OPEXodel  pperating cost according to tested model €

Q, amount of heat produced by boiler b kWh

Qenp amount of heat produced by CHP engine chp kWh

QSystem amount of heat produced in the multi-energy system kWh

rel predefined relative error of the multi-energy system -

AOPEX(;e‘ relative difference in operating cost -

AOPEXtl mean relative difference in operating cost -

ppeminal— nominal efficiency of boiler b -

n;‘m electrical efficiency of CHP engine chp -

n?ﬁ;‘ thermal efficiency of CHP engine chp -

sets and elements

symbol explanation

beB boiler

chp e CHP combined heat and power engine
deD measured data point

i number of iteration in AutoMoG
neN linear section

ses component
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