000889382 001__ 889382
000889382 005__ 20240313094933.0
000889382 037__ $$aFZJ-2021-00265
000889382 1001_ $$0P:(DE-Juel1)176305$$aLinssen, Charl$$b0$$eCorresponding author$$ufzj
000889382 245__ $$aODE-toolbox: Automatic selection and generation of integration schemes for systems of ordinary differential equations
000889382 250__ $$a2.2
000889382 260__ $$c2021
000889382 3367_ $$2DCMI$$aSoftware
000889382 3367_ $$0PUB:(DE-HGF)33$$2PUB:(DE-HGF)$$aSoftware$$bsware$$msware$$s1634739615_19757
000889382 3367_ $$2BibTeX$$aMISC
000889382 3367_ $$06$$2EndNote$$aComputer Program
000889382 3367_ $$2ORCID$$aOTHER
000889382 3367_ $$2DataCite$$aSoftware
000889382 520__ $$aChoosing the optimal solver for systems of ordinary differential equations (ODEs) is a critical step in dynamical systems simulation. ODE-toolbox is a Python package that assists in solver benchmarking, and recommends solvers on the basis of a set of user-configurable heuristics. For all dynamical equations that admit an analytic solution, ODE-toolbox generates propagator matrices that allow the solution to be calculated at machine precision. For all others, first-order update expressions are returned based on the Jacobian matrix.In addition to continuous dynamics, discrete events can be used to model instantaneous changes in system state, such as a neuronal action potential. These can be generated by the system under test, as well as applied as external stimuli, making ODE-toolbox particularly well-suited for applications in computational neuroscience.
000889382 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000889382 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000889382 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x2
000889382 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x3
000889382 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x4
000889382 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x5
000889382 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x6
000889382 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x7
000889382 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x8
000889382 7001_ $$0P:(DE-HGF)0$$aJain, S.$$b1
000889382 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b2$$ufzj
000889382 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen Martin$$b3$$ufzj
000889382 8564_ $$uhttps://doi.org/10.5281/zenodo.4245012
000889382 909CO $$ooai:juser.fz-juelich.de:889382$$pec_fundedresources$$pVDB$$popenaire
000889382 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176305$$aForschungszentrum Jülich$$b0$$kFZJ
000889382 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Physics$$b1
000889382 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b2$$kFZJ
000889382 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142538$$aForschungszentrum Jülich$$b3$$kFZJ
000889382 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000889382 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000889382 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000889382 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000889382 9141_ $$y2021
000889382 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000889382 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000889382 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
000889382 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x3
000889382 980__ $$asware
000889382 980__ $$aVDB
000889382 980__ $$aI:(DE-Juel1)JSC-20090406
000889382 980__ $$aI:(DE-Juel1)INM-6-20090406
000889382 980__ $$aI:(DE-Juel1)IAS-6-20130828
000889382 980__ $$aI:(DE-Juel1)INM-10-20170113
000889382 980__ $$aUNRESTRICTED
000889382 981__ $$aI:(DE-Juel1)IAS-6-20130828