000008894 001__ 8894
000008894 005__ 20200423202705.0
000008894 0247_ $$2DOI$$a10.1063/1.3284089
000008894 0247_ $$2WOS$$aWOS:000275028900099
000008894 0247_ $$2Handle$$a2128/17227
000008894 0247_ $$2altmetric$$aaltmetric:21803722
000008894 037__ $$aPreJuSER-8894
000008894 041__ $$aeng
000008894 082__ $$a530
000008894 084__ $$2WoS$$aPhysics, Applied
000008894 1001_ $$0P:(DE-Juel1)VDB59675$$aFeste, S. F.$$b0$$uFZJ
000008894 245__ $$aFormation of steep, low Schottky-barrier contacts by dopant segregation during nickel silicidation
000008894 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2010
000008894 300__ $$a044510-6
000008894 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000008894 3367_ $$2DataCite$$aOutput Types/Journal article
000008894 3367_ $$00$$2EndNote$$aJournal Article
000008894 3367_ $$2BibTeX$$aARTICLE
000008894 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000008894 3367_ $$2DRIVER$$aarticle
000008894 440_0 $$03051$$aJournal of Applied Physics$$v107$$x0021-8979$$y4
000008894 500__ $$aThe authors thank their former colleague Dr. M. Zhang for discussions and his valuable comments. This research has received Nanosil funding from the European Community (FP7, Grant No. 216171) and from the German Federal Ministry of Education via the MEDEA + project DECISIF (Grant No. 2T104).
000008894 520__ $$aWe present a systematic analysis of arsenic dopant segregation during nickel silicide formation. The slopes and concentrations of the arsenic dopant profiles at the NiSi/Si interface have been studied as a function of implantation energy, implantation dose, and NiSi thickness. Silicidation induced dopant segregation conserves the dopant slope at the silicide/silicon interface up to NiSi thicknesses of three times the as-implanted peak depth before degrading. Best slopes and highest dopant concentrations are obtained for low implantation energies and thin NiSi layers. We also demonstrate that the steepness of the dopant profile at the NiSi/Si interface can be significantly improved through a two-step annealing process for NiSi formation. For As, 1 keV, 1x10(15) cm(-2), and a 17 nm NiSi layer, a NiSi/Si junction with a dopant slope of 3.2 nm/decade has been obtained. An effective Schottky barrier of Phi(SB)=0.12 eV was determined by low temperature measurements of Schottky diodes with 20 nm NiSi formed by an optimized annealing process.
000008894 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000008894 536__ $$0G:(EU-Grant)216171$$2European Community$$aNANOSIL - Silicon-based nanostructures and nanodevices for long term nanoelectronics applications (216171)$$c216171$$fFP7-ICT-2007-1$$x1
000008894 588__ $$aDataset connected to Web of Science
000008894 65320 $$2Author$$aannealing
000008894 65320 $$2Author$$aarsenic
000008894 65320 $$2Author$$adoping profiles
000008894 65320 $$2Author$$aelemental semiconductors
000008894 65320 $$2Author$$aion implantation
000008894 65320 $$2Author$$anickel compounds
000008894 65320 $$2Author$$aSchottky barriers
000008894 65320 $$2Author$$asegregation
000008894 65320 $$2Author$$asemiconductor doping
000008894 65320 $$2Author$$asemiconductor-metal boundaries
000008894 65320 $$2Author$$asilicon
000008894 650_7 $$2WoSType$$aJ
000008894 7001_ $$0P:(DE-HGF)0$$aKnoch, J.$$b1
000008894 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b2$$uFZJ
000008894 7001_ $$0P:(DE-Juel1)VDB5539$$aZhao, Q. T.$$b3$$uFZJ
000008894 7001_ $$0P:(DE-Juel1)VDB2782$$aBreuer, U.$$b4$$uFZJ
000008894 7001_ $$0P:(DE-Juel1)VDB4959$$aMantl, S.$$b5$$uFZJ
000008894 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.3284089$$gVol. 107, p. 044510-6$$p044510-6$$q107<044510-6$$tJournal of applied physics$$v107$$x0021-8979$$y2010
000008894 8567_ $$uhttp://dx.doi.org/10.1063/1.3284089
000008894 8564_ $$uhttps://juser.fz-juelich.de/record/8894/files/1.3284089.pdf$$yOpenAccess
000008894 8564_ $$uhttps://juser.fz-juelich.de/record/8894/files/1.3284089.gif?subformat=icon$$xicon$$yOpenAccess
000008894 8564_ $$uhttps://juser.fz-juelich.de/record/8894/files/1.3284089.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000008894 8564_ $$uhttps://juser.fz-juelich.de/record/8894/files/1.3284089.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000008894 8564_ $$uhttps://juser.fz-juelich.de/record/8894/files/1.3284089.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000008894 909CO $$ooai:juser.fz-juelich.de:8894$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000008894 9141_ $$y2010
000008894 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000008894 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000008894 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000008894 9131_ $$0G:(EU-Grant)216171$$aDE-HGF$$vSilicon-based nanostructures and nanodevices for long term nanoelectronics applications
000008894 9201_ $$0I:(DE-Juel1)ZCH-20090406$$gZCH$$kZCH$$lZentralabteilung für Chemische Analysen$$x0
000008894 9201_ $$0I:(DE-Juel1)VDB799$$d31.12.2010$$gIBN$$kIBN-1$$lHalbleiter-Nanoelektronik$$x1
000008894 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000008894 970__ $$aVDB:(DE-Juel1)118166
000008894 980__ $$aVDB
000008894 980__ $$aConvertedRecord
000008894 980__ $$ajournal
000008894 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000008894 980__ $$aI:(DE-Juel1)PGI-9-20110106
000008894 980__ $$aI:(DE-82)080009_20140620
000008894 980__ $$aUNRESTRICTED
000008894 9801_ $$aFullTexts
000008894 981__ $$aI:(DE-Juel1)ZEA-3-20090406
000008894 981__ $$aI:(DE-Juel1)PGI-9-20110106
000008894 981__ $$aI:(DE-Juel1)VDB881