Hauptseite > Publikationsdatenbank > Formation of steep, low Schottky-barrier contacts by dopant segregation during nickel silicidation > print |
001 | 8894 | ||
005 | 20200423202705.0 | ||
024 | 7 | _ | |a 10.1063/1.3284089 |2 DOI |
024 | 7 | _ | |a WOS:000275028900099 |2 WOS |
024 | 7 | _ | |a 2128/17227 |2 Handle |
024 | 7 | _ | |a altmetric:21803722 |2 altmetric |
037 | _ | _ | |a PreJuSER-8894 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 530 |
084 | _ | _ | |2 WoS |a Physics, Applied |
100 | 1 | _ | |0 P:(DE-Juel1)VDB59675 |a Feste, S. F. |b 0 |u FZJ |
245 | _ | _ | |a Formation of steep, low Schottky-barrier contacts by dopant segregation during nickel silicidation |
260 | _ | _ | |a Melville, NY |b American Institute of Physics |c 2010 |
300 | _ | _ | |a 044510-6 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |0 3051 |a Journal of Applied Physics |v 107 |x 0021-8979 |y 4 |
500 | _ | _ | |a The authors thank their former colleague Dr. M. Zhang for discussions and his valuable comments. This research has received Nanosil funding from the European Community (FP7, Grant No. 216171) and from the German Federal Ministry of Education via the MEDEA + project DECISIF (Grant No. 2T104). |
520 | _ | _ | |a We present a systematic analysis of arsenic dopant segregation during nickel silicide formation. The slopes and concentrations of the arsenic dopant profiles at the NiSi/Si interface have been studied as a function of implantation energy, implantation dose, and NiSi thickness. Silicidation induced dopant segregation conserves the dopant slope at the silicide/silicon interface up to NiSi thicknesses of three times the as-implanted peak depth before degrading. Best slopes and highest dopant concentrations are obtained for low implantation energies and thin NiSi layers. We also demonstrate that the steepness of the dopant profile at the NiSi/Si interface can be significantly improved through a two-step annealing process for NiSi formation. For As, 1 keV, 1x10(15) cm(-2), and a 17 nm NiSi layer, a NiSi/Si junction with a dopant slope of 3.2 nm/decade has been obtained. An effective Schottky barrier of Phi(SB)=0.12 eV was determined by low temperature measurements of Schottky diodes with 20 nm NiSi formed by an optimized annealing process. |
536 | _ | _ | |0 G:(DE-Juel1)FUEK412 |2 G:(DE-HGF) |a Grundlagen für zukünftige Informationstechnologien |c P42 |x 0 |
536 | _ | _ | |0 G:(EU-Grant)216171 |2 European Community |a NANOSIL - Silicon-based nanostructures and nanodevices for long term nanoelectronics applications (216171) |c 216171 |f FP7-ICT-2007-1 |x 1 |
588 | _ | _ | |a Dataset connected to Web of Science |
650 | _ | 7 | |2 WoSType |a J |
653 | 2 | 0 | |2 Author |a annealing |
653 | 2 | 0 | |2 Author |a arsenic |
653 | 2 | 0 | |2 Author |a doping profiles |
653 | 2 | 0 | |2 Author |a elemental semiconductors |
653 | 2 | 0 | |2 Author |a ion implantation |
653 | 2 | 0 | |2 Author |a nickel compounds |
653 | 2 | 0 | |2 Author |a Schottky barriers |
653 | 2 | 0 | |2 Author |a segregation |
653 | 2 | 0 | |2 Author |a semiconductor doping |
653 | 2 | 0 | |2 Author |a semiconductor-metal boundaries |
653 | 2 | 0 | |2 Author |a silicon |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Knoch, J. |b 1 |
700 | 1 | _ | |0 P:(DE-Juel1)125569 |a Buca, D. |b 2 |u FZJ |
700 | 1 | _ | |0 P:(DE-Juel1)VDB5539 |a Zhao, Q. T. |b 3 |u FZJ |
700 | 1 | _ | |0 P:(DE-Juel1)VDB2782 |a Breuer, U. |b 4 |u FZJ |
700 | 1 | _ | |0 P:(DE-Juel1)VDB4959 |a Mantl, S. |b 5 |u FZJ |
773 | _ | _ | |0 PERI:(DE-600)1476463-5 |a 10.1063/1.3284089 |g Vol. 107, p. 044510-6 |p 044510-6 |q 107<044510-6 |t Journal of applied physics |v 107 |x 0021-8979 |y 2010 |
856 | 7 | _ | |u http://dx.doi.org/10.1063/1.3284089 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/8894/files/1.3284089.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/8894/files/1.3284089.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/8894/files/1.3284089.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/8894/files/1.3284089.jpg?subformat=icon-700 |x icon-700 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/8894/files/1.3284089.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:8894 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
913 | 1 | _ | |0 G:(DE-Juel1)FUEK412 |a DE-HGF |b Schlüsseltechnologien |k P42 |l Grundlagen für zukünftige Informationstechnologien (FIT) |v Grundlagen für zukünftige Informationstechnologien |x 0 |
913 | 1 | _ | |0 G:(EU-Grant)216171 |a DE-HGF |v Silicon-based nanostructures and nanodevices for long term nanoelectronics applications |
914 | 1 | _ | |y 2010 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |
920 | 1 | _ | |0 I:(DE-Juel1)ZCH-20090406 |k ZCH |l Zentralabteilung für Chemische Analysen |g ZCH |x 0 |
920 | 1 | _ | |d 31.12.2010 |g IBN |k IBN-1 |l Halbleiter-Nanoelektronik |0 I:(DE-Juel1)VDB799 |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology |g JARA |x 2 |
970 | _ | _ | |a VDB:(DE-Juel1)118166 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)ZEA-3-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)ZEA-3-20090406 |
981 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
981 | _ | _ | |a I:(DE-Juel1)VDB881 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|