001     8894
005     20200423202705.0
024 7 _ |a 10.1063/1.3284089
|2 DOI
024 7 _ |a WOS:000275028900099
|2 WOS
024 7 _ |a 2128/17227
|2 Handle
024 7 _ |a altmetric:21803722
|2 altmetric
037 _ _ |a PreJuSER-8894
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-Juel1)VDB59675
|a Feste, S. F.
|b 0
|u FZJ
245 _ _ |a Formation of steep, low Schottky-barrier contacts by dopant segregation during nickel silicidation
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2010
300 _ _ |a 044510-6
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3051
|a Journal of Applied Physics
|v 107
|x 0021-8979
|y 4
500 _ _ |a The authors thank their former colleague Dr. M. Zhang for discussions and his valuable comments. This research has received Nanosil funding from the European Community (FP7, Grant No. 216171) and from the German Federal Ministry of Education via the MEDEA + project DECISIF (Grant No. 2T104).
520 _ _ |a We present a systematic analysis of arsenic dopant segregation during nickel silicide formation. The slopes and concentrations of the arsenic dopant profiles at the NiSi/Si interface have been studied as a function of implantation energy, implantation dose, and NiSi thickness. Silicidation induced dopant segregation conserves the dopant slope at the silicide/silicon interface up to NiSi thicknesses of three times the as-implanted peak depth before degrading. Best slopes and highest dopant concentrations are obtained for low implantation energies and thin NiSi layers. We also demonstrate that the steepness of the dopant profile at the NiSi/Si interface can be significantly improved through a two-step annealing process for NiSi formation. For As, 1 keV, 1x10(15) cm(-2), and a 17 nm NiSi layer, a NiSi/Si junction with a dopant slope of 3.2 nm/decade has been obtained. An effective Schottky barrier of Phi(SB)=0.12 eV was determined by low temperature measurements of Schottky diodes with 20 nm NiSi formed by an optimized annealing process.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
536 _ _ |0 G:(EU-Grant)216171
|2 European Community
|a NANOSIL - Silicon-based nanostructures and nanodevices for long term nanoelectronics applications (216171)
|c 216171
|f FP7-ICT-2007-1
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a annealing
653 2 0 |2 Author
|a arsenic
653 2 0 |2 Author
|a doping profiles
653 2 0 |2 Author
|a elemental semiconductors
653 2 0 |2 Author
|a ion implantation
653 2 0 |2 Author
|a nickel compounds
653 2 0 |2 Author
|a Schottky barriers
653 2 0 |2 Author
|a segregation
653 2 0 |2 Author
|a semiconductor doping
653 2 0 |2 Author
|a semiconductor-metal boundaries
653 2 0 |2 Author
|a silicon
700 1 _ |0 P:(DE-HGF)0
|a Knoch, J.
|b 1
700 1 _ |0 P:(DE-Juel1)125569
|a Buca, D.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB5539
|a Zhao, Q. T.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB2782
|a Breuer, U.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB4959
|a Mantl, S.
|b 5
|u FZJ
773 _ _ |0 PERI:(DE-600)1476463-5
|a 10.1063/1.3284089
|g Vol. 107, p. 044510-6
|p 044510-6
|q 107<044510-6
|t Journal of applied physics
|v 107
|x 0021-8979
|y 2010
856 7 _ |u http://dx.doi.org/10.1063/1.3284089
856 4 _ |u https://juser.fz-juelich.de/record/8894/files/1.3284089.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/8894/files/1.3284089.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/8894/files/1.3284089.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/8894/files/1.3284089.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/8894/files/1.3284089.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:8894
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 1 _ |0 G:(EU-Grant)216171
|a DE-HGF
|v Silicon-based nanostructures and nanodevices for long term nanoelectronics applications
914 1 _ |y 2010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |0 I:(DE-Juel1)ZCH-20090406
|k ZCH
|l Zentralabteilung für Chemische Analysen
|g ZCH
|x 0
920 1 _ |d 31.12.2010
|g IBN
|k IBN-1
|l Halbleiter-Nanoelektronik
|0 I:(DE-Juel1)VDB799
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)118166
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21