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a b s t r a c t

The solver code generation tools of the Open Real-Time Simulation (ORTiS) framework are a C++
library and CLI tool designed to create real-time simulation solvers for power electronics systems.
These C++ defined solvers – generated by the tools – support high level synthesis to HDL, enabling
the implementation of FPGA solvers capable of nanosecond resolution in real-time. The ORTiS Solver
Codegen tools support the creation of multi-FPGA solvers and the use of user-defined power electronic
component models; system level models are described by netlists. These tools enable engineers to
perform hardware-in-the-loop testing of power electronic systems with high frequency dynamics,
using time steps as small as 35 nanoseconds.
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1. Motivation and significance

During the development of Power Electronic (PE) systems,
ardware-In-the-Loop (HIL) real-time simulation is often per-
ormed to reduce time to market of these products. From the
ise of modern large scale PE systems with high switching fre-
uency converters (100–200 kHz), fast control and fault pro-
ection mechanisms, and interplay of high harmonics in large
ystems, the need for Real-Time (RT) simulation tools able to
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model and simulate these systems with high fidelity has in-
creased. To achieve such fidelity, time steps below 100 ns are
required. In recent work [1–3], RT simulation solvers have utilized
Field Programmable Gate Arrays (FPGA) for their low latency
and high parallelism to solve PE systems with small time steps
≤1 µs. Though these particular RT solvers exist, there is a lack
of tools available to rapidly custom-model and deploy PE system
simulations using such solvers with FPGA execution. Commercial
tools provide for PE systems RT simulation, but these tools are
limited to CPU execution at time steps of 10 µs, with 200 ns
being possible on FPGA hardware in exchange for limited mod-
eling flexibility. Moreover, these commercial tools only provide
for simulation under their respective proprietary and expensive
hardware, and require purchased licenses.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. LB-LMC modeling and solver design; (a) Resistive companion models; (b) Solution flow; (c) Solver FPGA structure.
In this paper, we present C++ solver code generation (code-
en) tools, released as free, open source software under the
pen Real-Time Simulation (ORTiS) framework, which can con-
eniently and rapidly generate RT simulation solvers of PE sys-
ems. Utilizing the Latency-Based Linear Multistep Compound
LB-LMC) solver method [4], the codegen tools produce C++

defined solvers of PE systems that can RT execute on a wide range
of FPGA devices as High Level Synthesized (HLS) cores, with time
steps as low as 35 nanoseconds on modern FPGAs. The solver
codegen tools support defining PE system models as plain-text
netlists indicating components and their network connections in
the model. Individual component models can either be ones built
into the tools, or be user defined ones added to the tools’ source
2

code. To allow multi-FPGA execution, the codegen tools support
defining subsystems of a PE system, with a solver per subsystem
created using the decomposition approach presented in [5]. This
paper provides a summary on the codegen algorithms and their
usage to create PE system solvers RT-executed on FPGAs.

2. Software description

2.1. Summary of LB-LMC method

The LB-LMC method [4] used in the solvers generated by
the ORTiS codegen tools is a highly-parallelizable algorithm for
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Fig. 2. ORTiS LB-LMC solver codegen library structure.
Fig. 3. LB-LMC solver code generation flow.
solving nonlinear electrical/PE systems, similar to the Electro-
Magnetic Transient Program (EMTP) and other Resistive Com-
panion (RC) methods. Under the method, each component of
a PE system is defined as a discretized state space (SS) model
embodied as a collection of RC circuits, seen in Fig. 1(a). Each
RC circuit consists of sources h(t) representing past terms of the
model, with conductances g(t + dt) embodying present model
terms. From the models, a set of equations (1) is produced to be
solved each simulation time step of length dt for system solutions
vector x(t + dt). Matrix G(t + dt) and vector b(t) respectively
aggregate the g(t + dt) and h(t) terms of each component model.

G(t + dt)x(t + dt) = b(t) (1)

Unlike EMTP or other RC methods, all nonlinear components
in a system are discretized with explicit integration, where non-
linear SS models consist of only past terms at time ≤ t; linear
components are discretized implicitly. As such, the G(t+dt) term
of (1) is held constant for all time and the equations for non-
linear systems are solvable without iterative process (Newton–
Raphson), allowing nonlinear systems to be quickly solved us-
ing linear algebra approaches without loss of the nonlinearity.
3

Moreover, the LB-LMC method solves models of all system com-
ponents entirely in parallel, allowing for computational speedups
to achieve small time steps in real-time, especially under FPGA
execution. In [6,7], the method was demonstrated to RT simulate
multi-converter switching PE systems with 50 ns time steps on
Xilinx 7-series FPGAs.

To solve a PE system model for a time step under LB-LMC
method, the flow of Fig. 1(b) is followed. Offline, the G, x, and
b terms are initialized, G is pre-inverted, and component models
are set to initial conditions. Then, during online simulation, past
x(t) is updated, component SS models are solved in parallel for
their h(t) terms, and b(t) is updated from these terms. Finally, (1)
is solved for x(t + dt). If simulation continues, then the process
repeats for another time step. For FPGA execution, the LB-LMC
solver is implemented as in Fig. 1(c), where each component
model of a PE system is given a solver core to solve for h(t) and
their solutions are passed to a system solver core that solves (1).
The LB-LMC solver core is implementable to execute in dataflow
manner to solve the system for single time step within a execu-
tion clock cycle, using fixed-point math. RT execution is achieved
by setting clock period to dt; see [6,7] for details.
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Fig. 4. Example models and their RT simulation results; (a) shipboard PE system; (b) DC/AC converter; (c)(d) RT simulation results of Rload voltages and currents;
e)(f) magnification of (c) before and after voltage change.
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.2. Software architecture

The ORTiS solver codegen tools is a C++ library consisting of
ode generation classes whose instances generate and aggregate
++ code for PE system LB-LMC solver definitions. As depicted in
ig. 2, the tools contain classes to generate component model h(t)
olver code; generate system solvers to solve (1); compute G of
PE system; and aggregate generated code into a custom C++

efinition of the LB-LMC solver for a PE system. The tools also
ncludes classes to load PE system models from plain-text netlist
iles. The generated LB-LMC solvers are defined as C++functions
hich can be compiled for RT CPU execution or be high level
4

ynthesized (HLS) for RT FPGA execution. To ease use of the
olver codegen tools, a Command Line Interface (CLI) executable
s provided as source code with the library, which when built can
oad netlist files and output solver definitions for given netlists.

.3. Component solver generation

To generate model h(t) solver code for components in a PE
ystem, ComponentGenerator classes are provided by the solver
odegen tools. For each component type included in the tools
s a derived ComponentGenerator class, such as for capacitors,
witching PE converters, etc. Each instance of a ComponentGen-
rator takes as input model parameters and the indices of the
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Fig. 5. Netlist for portion of shipboard system.
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omponent node connections in a PE system network. Based on
he component model and given inputs, a ComponentGenerator
ill generate C++ code as a character string which is passed to
SolverEngineGenerator (SEG) instance that generates the actual
E system solver definition. This code will include the model
olver expressions and external signal port definitions that act
s inputs and outputs to the component solver, such as control
nd feedback signals for PE converters; these signal ports are
ealized as arguments to the system solver function. Moreover,
he ComponentGenerators compute their constant conductances
(t+dt) and stamps them into a Gmatrix stored by the SEG, along
ith providing information to the SEG on how component h(t)
erms map to b(t) of the system. User defined components can be
dded to the codegen tools by extending the ComponentGenerator
ase class through inheritance.

.4. Solver engine generation

To generate the PE system solver definition, a SolverEngine-
enerator (SEG) class is provided. A SEG instance generates a
unction definition for the system solver whose arguments are
he returned output x(t + dt) and input/output signal ports of
omponent solvers. For each time this solver function is called,
t solves its system model for a single time step. Each SEG in-
tance generates a solver function by taking the model code,
ignal port definitions, and RC model (h, g) information from
ach instanced component generator and aggregating the code
ogether into the body and signature of the function. Then, the
EG computes and defines G−1 in the function, generates code
o aggregate h(t) terms of each component solver into a b(t)
ector, and finally produces code to solve (1) as (2); using in-
ernal SystemConductanceGenerator, SystemSourceVectorGenerator,
nd SystemSolverGenerator objects.

(t + dt) = G−1b(t) (2)

uring code generation, the SEG connects the inputs, outputs,
nd solutions of the system to the arguments of the function
efinition. After code generation, the SEG stores elsewhere the
enerated definition as either a character string to be further
rocessed, or stores it into a C++ header file which is buildable
or a PE system simulator platform.

.5. Netlist loader and component generator factory

As many users prefer to define PE system models as plain-
ext netlist files rather than write C++ code, the tools provide
5

lasses to parse netlists and generate solvers from these files;
ee Section 3 for example netlist. The netlist files are handled
ith the NetlistLoader and Netlist classes. NetlistLoader instances

provide methods to read netlist files and return Netlist objects
storing component listings of a PE system netlist. Each of these
listing elements in a Netlist declares a component, including its
type, model parameters, and node connections in a system.

To instance the ComponentGenerator objects from the netlists,
set of producer and factory classes are included in the solver
odegen tools. Instances of the ComponentGeneratorFactory class
take listings from a Netlist and return a ComponentGenerator ob-
ject via scoped pointer for each listing. The ComponentGenerator
object is instanced by a ComponentGeneratorProducer object that
is registered to a specific component type in the ComponentGen-
eratorFactory. Once the ComponentGenerator objects are created,
they are systematically callable to generate their code and pass it
along to a SEG to generate the system solver function definition.
The CLI tool provided with the ORTiS solver codegen tools utilize
the netlist and factory classes to perform its operation.

2.6. Decomposed system solver generation for multi-FPGA execution

For large scale PE system models that need to be solved across
multiple FPGAs, these models require decomposition into subsys-
tems with associated solvers. These subsystem solvers are gener-
ated by instances of the SubsystemSolverEngineGenerator (SSEG)
class, derived from the SEG class. These SSEG objects utilize the
nodal decomposition extension to LB-LMC method, fully detailed
in [5], to generate solvers for systems decomposed into subsys-
tems. To create the subsystem solvers, the given netlist of a PE
system is manually decomposed into subsystems across one or
more 2-terminal network ports, with a netlist defined for each
subsystem. Then for each subsystem netlist, ComponentGenerator
objects are created for each component listing. These objects pass
their code and other information to an associated SSEG object
along with tuples indicating the decomposition port nodes and
their port index. From the given data, the SSEG objects compute
port models and exchange them between each other to complete
their subsystem models and generated solvers. The resultant
solver code can then be stored as strings or files to be utilized in
multi-FPGA simulator platforms. Each subsystem solver function
is similar to a monolithic solver created by SEG, but also has
arguments to exchange source contributions between subsystem
solvers to ensure subsystems are coupled during simulation to
maintain monolithic solutions; see [5] for details.
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Fig. 6. Comparison model and simulation results; (a) tested system; (b) comparison between LB-LMC and Simulink at 35 ns time step; (c) comparison between
35 ns and 1 µs time steps.
2.7. High level synthesis for FPGA execution

The general flow to create PE system solvers and deploy them
on FPGA platforms with the ORTiS solver codegen tools is pre-
sented in Fig. 3. First, the PE system is defined as a netlist of
its components. Then, this netlist is passed to the codegen tools
(CLI tool or application utilizing solver codegen library) which
generates a custom solver function definition based on the netlist.
Next, the generated solver definition files are passed to FPGA
C++ HLS tools, such as Xilinx Vivado HLx suite, to be translated
to Hardware Description Language (HDL) definition which can
be implemented on a FPGA target as an RT simulation core.
Directives can be passed to the HLS tool so that the solver core
is implemented with specified timing, latency, initiation interval,
and resource usage. Alternatively, the solver C++ definition can
e passed to a traditional C++compiler for implementation as a
T software solver to execute on CPUs.
6

3. Illustrative examples

An example usage of the ORTiS solver codegen tools is to
generate a RT simulation solver for a 40 MW, 12 kV dual split-bus
shipboard PE system depicted in Fig. 4(a) and presented in [6,7].
This system utilizes DC/AC converter components and resistive
loads depicted in Fig. 4(b), all operating with 100 kHz switching
frequency. The system model is discretized with 50 ns time
step. Each component in the system is modeled in state space,
applying switching functions for converter components, and has a
corresponding code generator in the ORTiS tools. The C++solver
of this system was generated with the codegen tools, HLS into a
FPGA core using Xilinx Vivado HLx suite, and then RT executed at
50 ns time step on a Xilinx VC707 Virtex-7 FPGA kit, using a Texas
Instruments DAC34H84EVM for analog output of RT results. RT
simulation solutions during closed-loop controlled load voltage
reduction of a PE converter in the system are depicted in Fig. 4(c)
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nd 4(d). Magnification of 100 kHz switching ripple of these load
oltages before and after change are shown in Fig. 4(e) and 4(f).
A portion of the ORTiS codegen netlist for the shipboard PE

ystem centered around a DC/AC converter is presented in Fig. 5;
he full netlist is provided as an example with the codegen
ools [8]. In the netlist, the name of the system model is defined
ith #name command and parameter constants are defined with
he #const command. Each component in the netlist is defined
y a line starting with type of the component, followed by its
abel, parameters in parentheses, and node connection indices in
urly brackets. A node index of 0 indicates connection to system
ommon (ground). Comments are added to the netlist via a line
tarting with % character.
To highlight LB-LMC solver accuracy and the need for small

ime steps, the standalone 12 kV DC/DC converter of Fig. 6(a)
as simulated under LB-LMC solver generated by the ORTiS code-
en tools and again under the commercial simulator Mathworks
imulink. Under each simulator, the converter ran at 100 kHz
witching frequency with 3500 V load output, using 35 ns time
teps, and undergoing a fault scenario where a load is shorted
o common by an inductive/resistive path. Fig. 6(b) presents the
oad voltage during the fault, showing the LB-LMC solver nearly
atches the commercial simulator, indicating accuracy of the LB-
MC solver under this scenario. Within Simulink, the model was
lso simulated under 1 µs time step for same scenario, with load
oltage plotted in Fig. 6(c) and compared to 35 ns time step result
rom LB-LMC solver. As seen in the figure, the higher frequency
lements of the fault transients become distorted at larger time
teps with lost fidelity and time shifts, introducing inaccuracies
uring simulation. These inaccuracies from larger steps, even at
µs, can adversely impact RT analysis and HIL testing of PE

ystems with high-frequency dynamics.

. Impact

The ORTiS solver codegen tools provide a convenient and open
ource means to develop and deploy RT FPGA-based simula-
ions of PE systems. Using these tools, engineers and researchers
an quickly create FPGA-based switching PE system simulation
olvers that can achieve 35 ns size time steps, enabling for RT/HIL
esting of new PE systems with ever increasing high-frequency
ynamics. In [5–7,9] we demonstrated how these solvers can be
sed for the RT/HIL analysis of microgrids and shipboard power
ystems with 50–100 kHz switching PE converters utilizing vari-
us Xilinx FPGA kits. Since the development of the ORTiS solver
odegen tools, another research group has adopted these tools to
nalyze the development of DC PE systems fault protection with
igh time resolution of fault transients not possible on commer-
ial RT simulators [10,11]. Thanks to the collaboration with this
roup we also demonstrated how the code generated solvers can
e executed on other FPGA targets such as National Instruments
latforms [10–12]. The most natural audience for the tools are
esearch groups that focus their attention on PE system design
nd who have simulation time resolution needs not satisfied by
xisting commercial RT simulators. The open source nature of
hese codegen tools can also be attractive to educational groups,
7

or to those that cannot afford the cost of commercial RT/HIL
simulators.

5. Conclusions

In this paper, the ORTiS Solver codegen tools and their func-
tionality have been presented. These tools were developed to
enable PE engineers to perform high-fidelity RT-HIL testing of fast
and complex PE systems that are arising in the modern times.
By releasing these tools as open source, it is hoped that a com-
munity forms that can both expand the tools’ functionality and
spread its usage throughout academia and industry, furthering
the progression of PE system development and testing.
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