000889654 001__ 889654
000889654 005__ 20240712113240.0
000889654 0247_ $$2doi$$a10.3390/en14030544
000889654 0247_ $$2Handle$$a2128/26905
000889654 0247_ $$2WOS$$aWOS:000615048000001
000889654 0247_ $$2altmetric$$aaltmetric:99228350
000889654 037__ $$aFZJ-2021-00286
000889654 082__ $$a620
000889654 1001_ $$0P:(DE-Juel1)171824$$aSchäfer, Dominik$$b0$$eCorresponding author$$ufzj
000889654 245__ $$aSystem-supporting Operation of Solid-oxide Electrolysis Stacks
000889654 260__ $$aBasel$$bMDPI$$c2021
000889654 3367_ $$2DRIVER$$aarticle
000889654 3367_ $$2DataCite$$aOutput Types/Journal article
000889654 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638254774_15499
000889654 3367_ $$2BibTeX$$aARTICLE
000889654 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889654 3367_ $$00$$2EndNote$$aJournal Article
000889654 520__ $$aFlexible, system-oriented operating strategies are becoming increasingly important in terms of achieving a climate-neutral energy system transformation. Solid-oxide electrolysis (SOEC) can play an important role in the production of green synthesis gas from renewable energy in the future. Therefore, it is important to investigate the extent to which SOEC can be used flexibly and which feedback effects and constraints must be taken into account. In this study, we derived a specific load profile from an energy turnaround scenario that supports the energy system. SOEC short-stacks were operated and we investigated the impact that the load profile has on electrical stack performance and stack degradation as well as the product gas composition by means of Fourier-transform infrared spectroscopy. The stacks could follow the grid-related requirement profiles of secondary control power and minute reserves very well with transition times of less than two minutes per 25% of relative power. Only short-term disturbances of the H2/CO ratio were observed during transitions due to the adjustment of feed gases. No elevated degradation effects resulting from flexible operation were apparent over 1300 h, although other causes of degradation were present.
000889654 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000889654 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000889654 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x2
000889654 7001_ $$0P:(DE-HGF)0$$aJanssen, Tomke$$b1
000889654 7001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b2$$ufzj
000889654 7001_ $$0P:(DE-HGF)0$$aMertens, Frank$$b3
000889654 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b4$$ufzj
000889654 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en14030544$$n3$$p544$$tEnergies$$v14$$x1996-1073$$y2021
000889654 8564_ $$uhttps://juser.fz-juelich.de/record/889654/files/Invoice_MDPI_energies-1068822_1413.13EUR.pdf
000889654 8564_ $$uhttps://juser.fz-juelich.de/record/889654/files/energies-14-00544.pdf$$yOpenAccess
000889654 8767_ $$81068822$$92021-01-15$$d2021-01-20$$eAPC$$jZahlung erfolgt$$penergies-1068822$$zBelegnr. 1200162165
000889654 909CO $$ooai:juser.fz-juelich.de:889654$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000889654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171824$$aForschungszentrum Jülich$$b0$$kFZJ
000889654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich$$b2$$kFZJ
000889654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b4$$kFZJ
000889654 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000889654 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000889654 9141_ $$y2021
000889654 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-06
000889654 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889654 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2018$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889654 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000889654 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000889654 920__ $$lyes
000889654 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000889654 9801_ $$aAPC
000889654 9801_ $$aFullTexts
000889654 980__ $$ajournal
000889654 980__ $$aVDB
000889654 980__ $$aI:(DE-Juel1)IEK-14-20191129
000889654 980__ $$aAPC
000889654 980__ $$aUNRESTRICTED
000889654 981__ $$aI:(DE-Juel1)IET-4-20191129