000889655 001__ 889655 000889655 005__ 20240313094937.0 000889655 0247_ $$2Handle$$a2128/26822 000889655 037__ $$aFZJ-2021-00287 000889655 041__ $$aEnglish 000889655 1001_ $$0P:(DE-Juel1)176595$$aSchulte to Brinke, Tobias$$b0$$eCorresponding author$$ufzj 000889655 1112_ $$aOrganisation For Computational Neuroscience - 29th Annual Computational Neuroscience Meeting$$cOnline$$d2020-07-18 - 2020-07-23$$gCNS2020$$wOnline 000889655 245__ $$aProcessing capacity of recurrent spiking networks 000889655 260__ $$c2020 000889655 3367_ $$033$$2EndNote$$aConference Paper 000889655 3367_ $$2BibTeX$$aINPROCEEDINGS 000889655 3367_ $$2DRIVER$$aconferenceObject 000889655 3367_ $$2ORCID$$aCONFERENCE_POSTER 000889655 3367_ $$2DataCite$$aOutput Types/Conference Poster 000889655 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1615814731_28656$$xAfter Call 000889655 520__ $$aOne of the most prevalent characteristics of neurobiological systems is the abundance of recurrent connectivity. Regardless of the spatial scale considered, recurrence is a fundamental design principle and a core anatomical feature, permeating the micro-, meso- and macroscopic levels. In essence, the brain (and, in particular, the mammalian neocortex) can be seen as a large recurrent network of recurrent networks. Despite the ubiquity of these observations, it remains unclear whether recurrence and the characteristics of its biophysical properties correspond to important functional specializations and if so, to what extent. Intuitively, from a computational perspective, recurrence allows information to be propagated in time, i.e. past information reverberates so as to influence online processing, endowing the circuits with memory and sensitivity to temporal structure. However, even in its simpler formulations, the functional relevance and computational consequences of recurrence in biophysical models of spiking networks are not clear or unambiguous and its effects vary depending on the type and characteristics of the system under analysis and the nature of the computational task. Therefore, it would be extremely useful, from both an engineering and a neurobiological perspective, to know to what extent is recurrence necessary for neural computation. In this work, we set out to quantify the extent to which recurrence modulates a circuit's computational capacity, by systematically measuring its ability to perform arbitrary transformations on an input, following [1]. By varying the strength and density of recurrent connections in balanced networks of spiking neurons, we evaluate the effect of recurrence on the complexity of the transformations the circuit can carry out and on the memory it is able to sustain. Preliminary results demonstrates some constraints on recurrent connectivity that optimize its processing capabilities for mappings that involve both linear memory and varying degrees of nonlinearity. Additionally, given that the metric we employ is particularly computationally- heavy (evaluating the system's capacity to represent thousands of target functions), a careful optimization and parallelization strategy is employed, enabling its application to networks of neuroscientific interest. We present a highly scalable and computationally efficient software, which pre-computes the thousands of necessary target polynomial functions for each point in a large combinatorial space, accesses these target functions through an efficient lookup operation, caches functions that need to be called multiple times with the same inputs and optimizes the most compute-intensive hotspots with Cython. In combination with MPI for internode communication this results in a highly scalable and computationally efficient implementation to determine the processing capacity of a dynamical system.References[1] Dambre J, Verstraeten D, Schrauwen B, Massar S. Information Processing Capacity of Dynamical Systems. Sci Rep. 2012, 2. 514. 000889655 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0 000889655 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1 000889655 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x2 000889655 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x3 000889655 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x4 000889655 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x5 000889655 7001_ $$0P:(DE-Juel1)171239$$aKhalid, Fahad$$b1$$ufzj 000889655 7001_ $$0P:(DE-Juel1)165640$$aDuarte, Renato$$b2$$ufzj 000889655 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b3$$ufzj 000889655 8564_ $$uhttps://juser.fz-juelich.de/record/889655/files/Poster_Schulte-to-Brinke_CNS20.pdf$$yOpenAccess 000889655 909CO $$ooai:juser.fz-juelich.de:889655$$pdriver$$pVDB$$popen_access$$popenaire 000889655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176595$$aForschungszentrum Jülich$$b0$$kFZJ 000889655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171239$$aForschungszentrum Jülich$$b1$$kFZJ 000889655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165640$$aForschungszentrum Jülich$$b2$$kFZJ 000889655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b3$$kFZJ 000889655 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0 000889655 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1 000889655 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000889655 9141_ $$y2020 000889655 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000889655 920__ $$lyes 000889655 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0 000889655 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1 000889655 9801_ $$aFullTexts 000889655 980__ $$aposter 000889655 980__ $$aVDB 000889655 980__ $$aI:(DE-Juel1)INM-6-20090406 000889655 980__ $$aI:(DE-Juel1)JSC-20090406 000889655 980__ $$aUNRESTRICTED 000889655 981__ $$aI:(DE-Juel1)IAS-6-20130828