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Introduction

One of the most prevalent characteristics of neurobiological systems is 
the abundance of recurrent connectivity permeating the micro-, meso- 
and macroscopic levels. Despite the ubiquity of these observations, it 
remains unclear whether recurrence and the characteristics of its 
biophysical properties correspond to important functional specializations 
and if so, to what extent. Therefore, it would be extremely useful, from 
both an engineering and a neurobiological perspective, to know to what 
extent is recurrence necessary for neural computation.
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Methods

In this work, we set out to quantify the extent to which recurrence 
modulates a circuit's computational capacity, by systematically measuring 
its ability to perform arbitrary transformations on an input, following [1] 
and [2]. The diagram below shows how the processing capacity of a 
network is determined.

 Balanced networks of 2000 integrate-and-fire neurons are used
 We test networks with varying density of recurrent connections

 Evaluation of the effect of recurrence on the complexity of the 
transformations  the circuit can carry out and on the memory it is 
able to sustain

 First, we adjust the minimum and maximum values of the rate-encoded 
signal to optimize the ability of the networks to reconstruct the input

 This enhances the comparability of the processing capacities 
between the networks

Parallelization and optimization

 The method is computationally heavy: Thousands of target functions 
have to be evaluated 

 Optimizations:
 Efficient lookup operation for polynomial functions
 Caching of functions, which need to be called multiple times with the 

same inputs
 The most compute-intense hotspots are optimized with Cython
 MPI for internode communication
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Experimental results

Sensitivity to changes in the input

 A strong correlation between amount of recurrent connections and the 
width of the the range of input rates the newtork needs to reconstruct 
the signal is observed

 Systems with higher recurrence densities need a broader range of 
rates encoding the input than systems with a low amount of recurrent 
connectivity
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 Shown are networks with different connections densities
 Averaged over 3 trials
 None of the networks showed a linear memory (greater than the step 

size of 50 ms)
 The density of recurrent conectivity plays an important role in the 

network's processing capabilities for mappings that involve varying 
degrees of nonlinearity

 In our set up connection densities of 0.2 and 0.3 lead to the best 
performance

 Without recurrent connections, the network was not able to compute 
any target function of higher degree
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Conclusion

 We developed a highly scalable version of the processing capacity 
method introduced in [1].

 With increased density of recurrent connections the network's 
sensitivity to changes in the input rate decreases

 Recurrent connectivity endows balanced spiking networks with the 
ability to perform non-linear transformations of their input.

 There is a sweet spot of recurrence density for the ability to perform 
these transformations.

Figure 1
Overview of the processing capacity method, showing the parts of the 
three distinct components: network simulation, polynomial computation 
and capacity computation

Figure 2
Minimum and maximum input 
rates that optimize the 
reconstruction of the signal for 
networks with different 
recurrence densities 

Figure 3
Processing capacities for 
networks with different 
recurrence densities, 
separated by the degree of the 
reconstructed target functions.
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