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A model of PEM fuel cell impedance is developed taking into account imposed harmonic perturbation of the air flow
velocity in the cathode channel. The flow velocity modulation with the amplitude proportional to AC amplitude of
the cell potential lowers the resistivity Rh due to oxygen transport in channel. When relative amplitudes of velocity
and potential oscillations are equal, a complete compensation of Rh occurs. This effect explains experimental find-
ings of Kim et al. (doi:10.1016/j.jpowsour.2008.06.069) and Hwang et al. (doi:10.1016/j.ijhydene.2010.01.064),
who demonstrated significant improvement of PEM fuel cell performance under oscillating air flow velocity.

I. INTRODUCTION

PEM fuel cell needs air (oxygen) for protons and electrons
conversion into water. Air is usually supplied to the cell
cathode through a system of channels (flow field). As any
other transport process in the cell, oxygen transport through
the channel is equivalent to electric resistivity Rh leading
to potential loss. In more general terms, one has to speak
about impedance Zh of oxygen transport in the channel1,2.

In 2007, Schneider et al.1,2 have attracted attention of
fuel cell community to “channel” impedance, a “forgotten
player” in the theory of PEMFC impedance. Since that
time, a number of experimental3–5 and modeling6–12 stud-
ies of this impedance have been published. At typical air
(oxygen) flow stoichiometry of about 2, the contribution of
Rh to the total cell resistivity is 15% to 20%10. Clearly,
lowering of Rh would lead to significant improvement of
the cell performance.

Kim et al.13 and later Hwang et al.14 experimentally
demonstrated dramatic improvement of PEMFC perfor-
mance under oscillating air flow velocity in the channel. The
effect of flow pulsation on the cell performance was more
pronounced at lower air flow rates, and the cell performance
increased with the amplitude of velocity pulsation13. The
gain in performance has been attributed to improvement of
oxygen transport through the cell due to flow pulsation13,14.

Below, a model for PEMFC impedance operated under
oscillating air flow velocity is developed. We show that
flow velocity oscillations lead to lowering of oxygen transport
impedance in the cathode channel. Under certain relation
between velocity and potential oscillation amplitudes, the
resistivity of oxygen transport in the channel vanishes. This
result supports the general conclusion of Kim et al.13 and
Hwang et al.14 that flow pulsation improves oxygen trans-
port in the cell; in this work, we demonstrate the mechanism
of this improvement. Further, the model gives a relation be-
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tween the amplitudes of velocity and potential oscillations,
at which the oxygen transport loss in the channel vanishes.

II. MODEL

The model of PEMFC impedance below is extension of
the model15. Consider a segmented PEM fuel cell equipped
with the single straight cathode channel (Figure 1). In the
channel, oxygen is assumed to be transported along the
z–axis, while in the porous layers it is transported in the
through–plane direction to the cathode catalyst layer (CCL),
where the oxygen reduction reaction (ORR) takes place.
The characteristic frequency of oxygen transport in cathode
channel is15

fh '
3.3v

2πL
(1)

where v is the air flow velocity and L is the channel length.
For typical flow velocity on the order of 102 cm s−1 and
the channel length L ' 100 cm, we get fh ' 0.5 Hz. This
frequency is well below characteristic frequencies for the
oxygen and proton transport in porous layers15, and hence
in the analysis of low–frequency phenomena the latter pro-
cesses can be ignored. The impedance model can thus be
derived from the performance model, which takes into ac-
count oxygen transport in the channel and faradaic process
in the cell.

A. Performance model

Assuming fast proton and oxygen transport in the trough–
plane direction, the cell performance is described by the
oxygen mass transport equation in the channel

∂c(t, z)

∂t
+ v(t)

∂c(t, z)

∂z
= − j(z)

4Fh
, c(0) = cref (2)

and proton current conservation equation

Cdllt
∂η(t)

∂t
− j(z) = −lti∗

(
c(t, z)

cref

)
exp

(
η(t)

b

)
(3)
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FIG. 1. Schematic of the segmented single–channel cell.

Here, c(t, z) is the oxygen concentration concentration in
the channel, cref is the reference concentration, z is the
distance along the channel, j is the cell current density,
h is the channel depth, η(t, z) is the ORR overpotential,
positive by convention, lt is the CCL thickness, i∗ is the
ORR exchange current density, b is the ORR Tafel slope.

Eq.(2) expresses oxygen mass balance assuming plug flow
conditions in the channel. The right side of this equation is
the stoichiometric flow of oxygen through the membrane–
electrode assembly, which agrees with the assumption of
fast O2 transport through the MEA. Eq.(3) is the proton
charge conservation equation in the CCL, assuming that
the rate of proton transport through the CCL is fast. This
assumption means that the ORR overpotential η is nearly
constant through the CCL depth. The overpotential η is
also assumed to be independent of the distance z; this as-
sumption holds if electron conductivity of the cell is large
and ohmic losses in the cell are small16. The first term on
the left side of Eq.(3) describes the displacement current
during charging/discharging of a double layer, and the term
on the right side is the local proton current consumed in the
ORR. Note that Eqs.(2), (3) ignore the contribution of the
anode side to the potential loss. The cell is assumed to be
far from equilibrium, meaning that the ORR overpotential
greatly exceeds the hydrogen oxidation overpotential on the
anode side, and hence the anodic contribution to the cell
impedance can be ignored.

In this work, the flow velocity v in Eq.(2) is considered
as the time–dependent variable. With the dimensionless
variables

t̃ =
t

t∗
, z̃ =

z

L
, j̃ =

j

i∗lt
, c̃ =

c

cref
,

η̃ =
η

b
, ṽ =

v

v∗
, Z̃ =

Zi∗lt
b

, ω̃ = ωt∗ (4)

Eqs.(2) and (3) take the form

ψ2 ∂c̃

∂t̃
+ ṽλJ̃

∂c̃

∂z̃
= −j̃, c̃(0) = 1 (5)

∂η̃

∂t̃
− j̃ = −c̃ exp η̃ (6)

where ψ is the dimensionless parameter

ψ =

√
4Fhcref
Cdlblt

, (7)

t∗ is the characteristic time of the double layer charging

t∗ =
Cdlb

i∗
, (8)

v∗ is the time–average flow velocity (see below), λ is the
stoichiometry of air flow corresponding to steady–state flow
with the velocity v∗

λ =
4Fv∗hcref

LJ
(9)

and J̃ is the mean current density in the cell

J̃ =

∫ 1

0

j̃ dz̃. (10)

A key difference of the system (5), (6) from the system
considered in15 is that ṽ in Eq.(5) is a function of time.

B. Impedance

Now we apply small–amplitude harmonic perturbations
to Eqs.(5), (6):

η̃ = η̃0 + η̃1 exp(iω̃t̃)

j̃ = j̃0 + j̃1 exp(iω̃t̃)

c̃ = c̃0 + c̃1 exp exp(iω̃t̃)

(11)

In the following, we will assume that the inlet flow velocity is
modulated with the amplitude proportional to the amplitude
of potential perturbation. With this assumption, the time
dependence of ṽ can be written as

ṽ = 1 + kv η̃
1 exp(iω̃t̃) (12)

where 0 ≤ kv ≤ 1 is the real and non–negative modulation
amplitude parameter. The unperturbed flow velocity is v∗
and hence the static term in Eq.(12) is unity. Note that in
experiments of Hwang et al.14, the mean flow velocity was
zero. In this case, the static term in Eq.(12) is zero and
the flow velocity has to be scaled using the speed of sound,
for example. Note also that real kv means that there is no
phase shift between η̃ and ṽ oscillations; these oscillations
may differ in amplitude only.

Substituting Eqs.(11) and (12) into Eqs.(5), (6) and ne-
glecting terms with the perturbation products, we get equa-
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tions for the perturbation amplitudes

λJ̃
∂c̃1

∂z̃
= −

(
eη̃

0

+ iω̃ψ2
)
c̃1 −

(
eη̃

0

c̃0 + iω̃
)
η̃1

− λJ̃ ∂c̃
0

∂z̃
kv η̃

1, c̃1(0) = 0 (13)

j̃1 = eη̃
0 (
c̃1 + c̃0η̃1

)
+ iω̃η̃1 (14)

where Eq.(13) is obtained using Eq.(14). The boundary
condition to Eq.(13) means that the inlet oxygen concen-
tration is not perturbed; perturbed is the flow velocity only.
Generally, if the flow velocity is perturbed using pressure
modulation, the inlet oxygen concentration would also os-
cillate and the boundary condition to Eq.(13) would read
c̃1(0) = c̃10. This condition, however, complicates the anal-
ysis not changing the main results.

The goal of this work is to demonstrate the effect of
inlet velocity modulation on the cell impedance and for the
shapes of static current and oxygen concentration along the
channel we take the zero–order solutions16:

j̃0 = −J̃λ ln
(
1− 1

λ

)(
1− 1

λ

)z̃
(15)

c̃0 =

(
1− 1

λ

)z̃
(16)

Eqs.(15), (16) are valid if the cell ohmic resistivity RΩ is
small, i.e., the product JRΩ/b � 1 (see16 for details).
Eqs.(15), (16) allow us to get analytical solution to the
problem. A more accurate approximation of j̃0 and c̃0 can
be obtained numerically as discussed in16.

Local cell impedance at the point z̃ is given by

Z̃loc(z̃) =
η̃1

j̃1
(17)

To calculate Z̃loc, we solve Eq.(13):

c̃1 =

iη̃1ω̃

((
1− 1

λ

)z̃
exp

(
− iω̃ψ2z̃

λJ̃

)
− 1

)
φλJ̃ + iω̃ψ2

+
η̃1 (1− kv)φλJ̃

iω̃ψ2

(
1− 1

λ

)z̃ (
exp

(
− iω̃ψ2z̃

λJ̃

)
− 1

)
(18)

where the parameter φλ is

φλ = −λ ln
(
1− 1

λ

)
, (19)

and equation for the static cell polarization curve

φλJ̃ = eη̃
0

(20)

was used to eliminate eη̃
0

in Eq.(18). Eq.(20) is obtained
upon substitution of Eqs.(15), (16) into the static version
of charge conservation equation (6).

Substituting Eq.(18) into Eq.(14) and dividing the result-

ing equation by j̃1, we get an algebraic equation for Z̃loc.
Solving this equation, we come to

Z̃loc =
1

φλJ̃

{
i

(
ω̃

φλJ̃ + iω̃ψ2
− φλJ̃(1− kv)

ω̃ψ2

)

×
(
1− 1

λ

)z̃
exp

(
− iω̃ψ2z̃

λJ̃

)
− iω̃

φλJ̃ + iω̃ψ2

+

(
1− 1

λ

)z̃ (
1 +

iφλJ̃(1− kv)
ω̃ψ2

)
+

iω̃

φλJ̃

}−1

(21)

The total cell impedance Z̃cell is given by

Z̃cell =

(∫ 1

0

dz̃

Z̃loc

)−1

(22)

Calculation of integral gives

Z̃cell =
((

iφλJ̃ − 2ω̃ψ2
)
φλJ̃ − iω̃2ψ4

) ω̃ψ2

Dcell
(23)

where

Dcell = (λ− 1)

(
1− exp

(
− iω̃ψ2

λJ̃

))
(1− kv)φ3

λJ̃
4

−
(
(1− kv)

(
exp

(
− iω̃ψ2

λJ̃

)
(λ− 1)− λ

)
− 2kv + 1

)
× iω̃ψ2φ2

λJ̃
3

−
(
(1 + kv)ψ

2 − exp

(
− iω̃ψ2

λJ̃

)
(λ− 1) + λ

)
× ω̃2ψ2φλJ̃

2 − i
(
ψ2 + φλ

)
ω̃3ψ4J̃ + ω̃4ψ6 (24)

III. RESULTS AND DISCUSSION

It is advisable to consider first the limit of ω → 0. Ex-
pansion of Eq.(23) in Taylor series over ω̃ → 0 gives at

leading order the differential cell resistivity R̃cell, which in
the dimension form is

Rcell =
b

J

(
kv − (λ− 1) ln (1− 1/λ) (1− kv)

) (25)

With kv = 0 (no velocity modulation), Eq.(25) reduces to15

Rkv=0
cell = − b

J

(
(λ− 1) ln (1− 1/λ)

) (26)
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FIG. 2. Function φ2 = −(λ − 1) ln (1 − 1/λ) appearing in
denominator of Eqs.(25),(26).

The factor

φ2 = (λ− 1) ln

(
1− 1

λ

)
< 1 (27)

in denominator of Eq.26 describes the resistivity growth due
to finite air flow stoichiometry λ; the less is φ2, the larger
is the transport resistivity (Figure 2).

However, with kv = 1 the dependence on λ in Eq.(25)
vanishes and we get

Rkv=1
cell =

b

J
(28)

which is a pure charge–transfer cell resistivity17. Thus, ve-
locity perturbation with the dimensionless amplitude equal
to the amplitude of potential perturbation completely com-
pensates for the losses due to oxygen transport in the cath-
ode channel. The equality of ṽ1 and η̃1 perturbation am-
plitudes means that the following relation between the di-
mension amplitudes must hold:

v1

v∗
=
η1

b
(29)

Typical ORR Tafel slope in Pt/C electrodes is about 30 mV.
Thus, with the potential oscillation amplitude on the order
of 3 mV, the inlet flow velocity oscillation with the ampli-
tude of 10% of the time–average velocity provides complete
compensation of oxygen transport losses in the channel.

With the growth of λ, the effect of velocity modulation
progressively lowers. Indeed, at large λ, φ2 tends to unity
(Figure 2); setting in Eq.(28) φ2 ' 1, we see that the
dependence on kv vanishes. From Figure 2 is is clear that
the effect of velocity modulation is most pronounced at λ .
2, which agrees with the experimental results of Kim et al.13.

The effect of kv on the dimension Nyquist spectra of
Eq.(22) is shown in Figure 3. With kv = 0, the spectrum
has the form of two arcs, with the left arc due to faradaic

Catalyst layer thickness lt, cm 10−3

Exchange current density i∗, A cm−3 10−3

ORR Tafel slope b, V 0.03

Double layer capacitance, Cdl, F cm−3 20

Channel depth h, cm 0.1

Cell temperature T , K 273 + 80

Mean cell current density J , A cm−2 0.1

Air flow stoichiometry λ 2

TABLE I. Cell geometrical and operating parameters used
in the calculations. The characteristic values of b and Cdl
are taken from impedance measurements18; the value of i∗ is
assumed. The Tafel slope is given per exponential basis.
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FIG. 3. (a) Nyquist spectra of the total cell impedance,
Eq.(23) for the indicated values of the flow velocity ampli-
tude parameter kv, Eq.(12). Zero kv corresponds to static
flow velocity. (b) The frequency dependence of imaginary
part of impedance in (a).

impedance, and the right arc due to oxygen transport in
the channel1. When kv varies from 0 to 1, the “channel”
arc gets smaller, and at kv = 1 this arc almost completely
vanishes (Figure 3). The curve kv = 1 illustrates compen-
sation of the “channel” losses by the applied flow velocity
oscillations.

To understand the role of velocity oscillations, consider
again Eq.(14). With c̃1 = 0 (no perturbation of the oxygen
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concentration in channel), this equation simplifies to

j̃1 =
(
eη̃

0

c̃0 + iω̃
)
η̃1 (30)

and hence the local cell impedance Z̃loc = η̃1/j̃1 reduces
to impedance of a parallel RC–circuit:

Z̃ c̃
1=0
loc =

1

eη̃0 c̃0 + iω̃
=

1

j̃0 + iω̃
(31)

Using here j̃0 from Eq.(15), and calculating the total cell
impedance according to Eq.(22), we get

Z̃ c̃
1=0
cell =

1

J̃ + iω̃
(32)

which is pure charge–transfer impedance. Thus, the oxy-
gen transport losses are represented by the term with c̃1 in
Eq.(14). The key result is that with kv = 1 this term is
strongly damped.

Figure 4 shows the real and imaginary part of the nor-
malized oxygen “concentration admittance”

Y =
c̃1

η̃1
(33)

obtained from Eq.(18) with kv = 0 and kv = 1. As can be
seen, at kv = 1 the amplitude of c̃1 oscillations is strongly
(though not completely) damped, leading to much lower
transport loss. Note that with kv = 1, Y is still non–zero
at ω̃ > 0 (Figure 4), meaning that complete compensation
of the channel impedance occurs in the limit of ω̃ → 0 only,
while at a finite ω̃, the cell impedance slightly differs from
the faradaic impedance, Eq.(32).

From this analysis it follows that the whole effect of
oxygen transport loss in channel is purely dynamic in na-
ture. In the true steady state, finite oxygen stoichiome-
try λ only shifts the polarization curve as a whole along
the potential axis, not changing the slope of the curve
(cell resistivity). Indeed, from the static polarization curve,
Eq.(20), it follows that the true static differential cell re-

sistivity R0
cell = ∂η̃0/∂J̃ = 1/J̃ , which is a pure faradaic

resistivity independent of λ. This result also follows from
Eq.(32). However, small perturbations of flow parameters
immediately lead to small oscillations of oxygen concentra-
tion in channel. These oscillations, in turn, induce small
oscillations of the cell potential, and the system enters
the dynamic mode with the quasi–static resistivity given
by Eq.(26). Harmonic modulation of the flow velocity with
0 < kv ≤ 1 allows one to lower this resistivity, as Eq.(25)
shows.

In reality, fuel cell never works in a true steady state; due
to small variation of operating conditions and aging of cell
components, even in stationary experiments and applica-
tions the cell potential slowly varies with time. This varia-
tion corresponds to a small but nonzero ω̃ > 0, making the
“channel” resistivity quite significant. In automotive appli-
cations, fuel cells operate in intrinsically transient regimes
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FIG. 4. Normalized oxygen concentration perturbation am-
plitude Y = c̃1/η̃1, Eqs.(33), (18), along the cathode channel
for the two values of the flow velocity amplitude parameter kv,
Eq.(12). The frequency of potential and velocity oscillations
f = 1 Hz.

and the cell voltage strongly varies with time.

Modern air flow controllers can be programmed for vari-
able flow velocity. For practical realization of in–phase flow
velocity and cell potential variations, a custom–made elec-
tronic circuit sending to flow controller the amplitude and
phase of the cell potential is required. Design of such a
system is hardly a big problem.

In this work, AC perturbation η̃1 of the cell potential and
the velocity oscillation amplitude kv are assumed to be in-
dependent parameters. However, in real applications, the
amplitude of flow velocity oscillations could be regulated
by flow controller, while the respective potential perturba-
tion would be a dependent, uncontrolled parameter. The
relation between oscillation amplitudes of velocity and cell
potential in this case could be controlled experimentally.
Another option would be excitation of flow velocity oscilla-
tions by pressure wave applied to the inlet flow. However,
development of impedance model which would describe this
situation is a much more challenging task.

The model above is developed for low–current regime
of cell operation. Unfortunately, analysis of high–current
regime poses significant mathematical difficulties. At high
currents, the ORR overpotential and oxygen concentration
are no longer constant through the CCL depth, and Eq.(3)
in its present form is not longer valid. Account of oxy-
gen transport equations in the porous layers and Ohm’s law
would make the model much more complicated. Overall,
the experiments14,19 and the simple model above suggest
that the problem deserves further studies.
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IV. CONCLUSIONS

The model of PEM fuel cell impedance is developed tak-
ing into account air flow velocity oscillations applied in–
phase with the AC potential perturbation. The model is
based on oxygen mass transport equation in the cathode
channel coupled to the proton current conservation equation
in the cathode catalyst layer. The model aims at descrip-
tion of low–frequency phenomena in the cell and it ignores
proton and oxygen transport in the porous layers, assuming
that this transport is fast.

The model shows that velocity oscillations reduce the re-
sistivity Rh of oxygen transport in the cathode channel. If
the relative amplitudes of velocity and potential oscillations
are equal, the resistivity Rh vanishes, meaning quite a sig-
nificant
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Nomenclature

˜ Marks dimensionless variables

b ORR Tafel slope, V

Cdl Double layer volumetric capacitance, F cm−3

c Oxygen molar concentration, mol cm−3

cref Reference oxygen concentration

(at the channel inlet), mol cm−3

F Faraday constant, C mol−1

f Regular frequency, Hz

J Mean cell current density, A cm−2

j Local cell current density, A cm−2

h Channel depth, cm

i Imaginary unit

i∗ Volumetric exchange current density, A cm−3

L Channel length,cm

lt Catalyst layer thickness, cm

t Time, s

v Flow velocity in the cathode channel, cm s−1

x Coordinate through the cell, cm

Z Impedance, Ω cm2

z Coordinate along the air channel, cm

Subscripts:

h Air channel

loc Local impedance

∗ Characteristic or time–average value

Superscripts:

0 Steady–state value

1 Small–amplitude perturbation

Greek:

λ Air flow stoichiometry

φλ Dimensionless parameter, Eq.(19)

ψ Dimensionless parameter, Eq.(7)

ω Angular frequency (ω = 2πf), s−1


