000889692 001__ 889692
000889692 005__ 20230111074228.0
000889692 0247_ $$2doi$$a10.7566/JPSJ.90.012001
000889692 0247_ $$2ISSN$$a0031-9015
000889692 0247_ $$2ISSN$$a1347-4073
000889692 0247_ $$2Handle$$a2128/26830
000889692 0247_ $$2altmetric$$aaltmetric:92182300
000889692 0247_ $$2WOS$$aWOS:000603299700001
000889692 037__ $$aFZJ-2021-00316
000889692 082__ $$a530
000889692 1001_ $$0P:(DE-Juel1)144355$$aJin, Fengpin$$b0
000889692 245__ $$aRandom State Technology
000889692 260__ $$aTokyo$$bThe Physical Society of Japan$$c2021
000889692 3367_ $$2DRIVER$$aarticle
000889692 3367_ $$2DataCite$$aOutput Types/Journal article
000889692 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634739776_19756
000889692 3367_ $$2BibTeX$$aARTICLE
000889692 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889692 3367_ $$00$$2EndNote$$aJournal Article
000889692 520__ $$aWe review and extend, in a self-contained way, the mathematical foundations of numerical simulation methods that are based on the use of random states. The power and versatility of this simulation technology is illustrated by calculations of physically relevant properties such as the density of states of large single particle systems, the specific heat, current–current correlations, density–density correlations, and electron spin resonance spectra of many-body systems. We explore a new field of applications of the random state technology by showing that it can be used to analyze numerical simulations and experiments that aim to realize quantum supremacy on a noisy intermediate-scale quantum processor. Additionally, we show that concepts of the random state technology prove useful in quantum information theory.
000889692 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000889692 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000889692 588__ $$aDataset connected to CrossRef
000889692 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b1
000889692 7001_ $$0P:(DE-Juel1)167543$$aWillsch, Madita$$b2
000889692 7001_ $$0P:(DE-Juel1)176109$$aLagemann, Hannes$$b3
000889692 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b4
000889692 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b5$$eCorresponding author
000889692 773__ $$0PERI:(DE-600)2042147-3$$a10.7566/JPSJ.90.012001$$gVol. 90, no. 1, p. 012001 -$$n1$$p012001 -$$tJournal of the Physical Society of Japan$$v90$$x1347-4073$$y2021
000889692 8564_ $$uhttps://juser.fz-juelich.de/record/889692/files/jpsj.90.012001.pdf$$yOpenAccess
000889692 8767_ $$820207046$$92020-10-09$$d2020-10-14$$eHybrid-OA$$jZahlung erfolgt$$z50000JPY Belegnr. 1200158136
000889692 909CO $$ooai:juser.fz-juelich.de:889692$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000889692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b0$$kFZJ
000889692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b1$$kFZJ
000889692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b2$$kFZJ
000889692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176109$$aForschungszentrum Jülich$$b3$$kFZJ
000889692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b4$$kFZJ
000889692 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000889692 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000889692 9141_ $$y2021
000889692 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000889692 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889692 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS SOC JPN : 2018$$d2020-08-32
000889692 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000889692 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000889692 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000889692 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889692 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-32
000889692 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000889692 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000889692 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000889692 980__ $$ajournal
000889692 980__ $$aVDB
000889692 980__ $$aI:(DE-Juel1)JSC-20090406
000889692 980__ $$aAPC
000889692 980__ $$aUNRESTRICTED
000889692 9801_ $$aAPC
000889692 9801_ $$aFullTexts