Home > Publications database > Random State Technology > print |
001 | 889692 | ||
005 | 20230111074228.0 | ||
024 | 7 | _ | |a 10.7566/JPSJ.90.012001 |2 doi |
024 | 7 | _ | |a 0031-9015 |2 ISSN |
024 | 7 | _ | |a 1347-4073 |2 ISSN |
024 | 7 | _ | |a 2128/26830 |2 Handle |
024 | 7 | _ | |a altmetric:92182300 |2 altmetric |
024 | 7 | _ | |a WOS:000603299700001 |2 WOS |
037 | _ | _ | |a FZJ-2021-00316 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Jin, Fengpin |0 P:(DE-Juel1)144355 |b 0 |
245 | _ | _ | |a Random State Technology |
260 | _ | _ | |a Tokyo |c 2021 |b The Physical Society of Japan |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1634739776_19756 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We review and extend, in a self-contained way, the mathematical foundations of numerical simulation methods that are based on the use of random states. The power and versatility of this simulation technology is illustrated by calculations of physically relevant properties such as the density of states of large single particle systems, the specific heat, current–current correlations, density–density correlations, and electron spin resonance spectra of many-body systems. We explore a new field of applications of the random state technology by showing that it can be used to analyze numerical simulations and experiments that aim to realize quantum supremacy on a noisy intermediate-scale quantum processor. Additionally, we show that concepts of the random state technology prove useful in quantum information theory. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Willsch, Dennis |0 P:(DE-Juel1)167542 |b 1 |
700 | 1 | _ | |a Willsch, Madita |0 P:(DE-Juel1)167543 |b 2 |
700 | 1 | _ | |a Lagemann, Hannes |0 P:(DE-Juel1)176109 |b 3 |
700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 4 |
700 | 1 | _ | |a De Raedt, Hans |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.7566/JPSJ.90.012001 |g Vol. 90, no. 1, p. 012001 - |0 PERI:(DE-600)2042147-3 |n 1 |p 012001 - |t Journal of the Physical Society of Japan |v 90 |y 2021 |x 1347-4073 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/889692/files/jpsj.90.012001.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:889692 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)144355 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167542 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)167543 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)176109 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)138295 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-32 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS SOC JPN : 2018 |d 2020-08-32 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-32 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-08-32 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-32 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|