000889720 001__ 889720
000889720 005__ 20210208142311.0
000889720 0247_ $$2doi$$a10.1021/acs.jctc.0c00727
000889720 0247_ $$2ISSN$$a1549-9618
000889720 0247_ $$2ISSN$$a1549-9626
000889720 0247_ $$2Handle$$a2128/26829
000889720 0247_ $$2altmetric$$aaltmetric:95011814
000889720 0247_ $$2pmid$$a33233894
000889720 0247_ $$2WOS$$aWOS:000598208600044
000889720 037__ $$aFZJ-2021-00342
000889720 082__ $$a610
000889720 1001_ $$0P:(DE-Juel1)180313$$aIllig, Alexander-Maurice$$b0
000889720 245__ $$aPerformance of Markov State Models and Transition Networks on Characterizing Amyloid Aggregation Pathways from MD Data
000889720 260__ $$aWashington, DC$$c2020
000889720 3367_ $$2DRIVER$$aarticle
000889720 3367_ $$2DataCite$$aOutput Types/Journal article
000889720 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611078074_1768
000889720 3367_ $$2BibTeX$$aARTICLE
000889720 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889720 3367_ $$00$$2EndNote$$aJournal Article
000889720 520__ $$aMolecular dynamic (MD) simulations are animportant tool for studying protein aggregation processes, whichplay a central role in a number of diseases including Alzheimer’sdisease. However, MD simulations produce large amounts of data,requiring advanced methods to extract mechanistic insight into theprocess under study. Transition networks (TNs) provide anelegant method to identify (meta)stable states and the transitionsbetween them from MD simulations. Here, we apply two differentmethods to generate TNs for protein aggregation: Markov statemodels (MSMs), which are based on kinetic clustering the statespace, and TNs using conformational clustering. The similaritiesand differences of both methods are elucidated for the aggregationof the fragment Aβ16−22 of the Alzheimer’s amyloid-β peptide. Ingeneral, both methods perform excellently in identifying the main aggregation pathways. The strength of MSMs is that they providea rather coarse and thus simply to interpret picture of the aggregation process. Conformation-sorting TNs, on the other hand,outperform MSMs in uncovering mechanistic details. We thus recommend to apply both methods to MD data of proteinaggregation in order to obtain a complete picture of this process. As part of this work, a Python script called ATRANET forautomated TN generation based on a correlation analysis of the descriptors used for conformational sorting is made publiclyavailable.
000889720 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000889720 588__ $$aDataset connected to CrossRef
000889720 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b1$$eCorresponding author
000889720 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.0c00727$$gVol. 16, no. 12, p. 7825 - 7839$$n12$$p7825 - 7839$$tJournal of chemical theory and computation$$v16$$x1549-9626$$y2020
000889720 8564_ $$uhttps://juser.fz-juelich.de/record/889720/files/Autorenmanuskripft_Performance%20of%20Markov%20State%20Models%20and%20Transition%20Networks%20on%20Characterizing%20Amyloid%20Aggregation%20Pathways%20from%20MD%20Data.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000889720 8564_ $$uhttps://juser.fz-juelich.de/record/889720/files/acs.jctc.0c00727.pdf$$yRestricted
000889720 909CO $$ooai:juser.fz-juelich.de:889720$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b1$$kFZJ
000889720 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000889720 9141_ $$y2020
000889720 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-20
000889720 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-20
000889720 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-20
000889720 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2018$$d2020-08-20
000889720 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-20
000889720 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-20
000889720 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889720 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2018$$d2020-08-20
000889720 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-20
000889720 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-20
000889720 920__ $$lyes
000889720 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000889720 980__ $$ajournal
000889720 980__ $$aVDB
000889720 980__ $$aUNRESTRICTED
000889720 980__ $$aI:(DE-Juel1)IBI-7-20200312
000889720 9801_ $$aFullTexts