001     889720
005     20210208142311.0
024 7 _ |a 10.1021/acs.jctc.0c00727
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a 2128/26829
|2 Handle
024 7 _ |a altmetric:95011814
|2 altmetric
024 7 _ |a 33233894
|2 pmid
024 7 _ |a WOS:000598208600044
|2 WOS
037 _ _ |a FZJ-2021-00342
082 _ _ |a 610
100 1 _ |a Illig, Alexander-Maurice
|0 P:(DE-Juel1)180313
|b 0
245 _ _ |a Performance of Markov State Models and Transition Networks on Characterizing Amyloid Aggregation Pathways from MD Data
260 _ _ |a Washington, DC
|c 2020
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611078074_1768
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Molecular dynamic (MD) simulations are animportant tool for studying protein aggregation processes, whichplay a central role in a number of diseases including Alzheimer’sdisease. However, MD simulations produce large amounts of data,requiring advanced methods to extract mechanistic insight into theprocess under study. Transition networks (TNs) provide anelegant method to identify (meta)stable states and the transitionsbetween them from MD simulations. Here, we apply two differentmethods to generate TNs for protein aggregation: Markov statemodels (MSMs), which are based on kinetic clustering the statespace, and TNs using conformational clustering. The similaritiesand differences of both methods are elucidated for the aggregationof the fragment Aβ16−22 of the Alzheimer’s amyloid-β peptide. Ingeneral, both methods perform excellently in identifying the main aggregation pathways. The strength of MSMs is that they providea rather coarse and thus simply to interpret picture of the aggregation process. Conformation-sorting TNs, on the other hand,outperform MSMs in uncovering mechanistic details. We thus recommend to apply both methods to MD data of proteinaggregation in order to obtain a complete picture of this process. As part of this work, a Python script called ATRANET forautomated TN generation based on a correlation analysis of the descriptors used for conformational sorting is made publiclyavailable.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 1
|e Corresponding author
773 _ _ |a 10.1021/acs.jctc.0c00727
|g Vol. 16, no. 12, p. 7825 - 7839
|0 PERI:(DE-600)2166976-4
|n 12
|p 7825 - 7839
|t Journal of chemical theory and computation
|v 16
|y 2020
|x 1549-9626
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/889720/files/Autorenmanuskripft_Performance%20of%20Markov%20State%20Models%20and%20Transition%20Networks%20on%20Characterizing%20Amyloid%20Aggregation%20Pathways%20from%20MD%20Data.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/889720/files/acs.jctc.0c00727.pdf
909 C O |o oai:juser.fz-juelich.de:889720
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Physical Basis of Diseases
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-20
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2018
|d 2020-08-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2018
|d 2020-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21