000889721 001__ 889721
000889721 005__ 20210215175046.0
000889721 0247_ $$2doi$$a10.1021/acs.jcim.0c01063
000889721 0247_ $$2ISSN$$a0095-2338
000889721 0247_ $$2ISSN$$a1520-5142
000889721 0247_ $$2ISSN$$a(BIS
000889721 0247_ $$2ISSN$$a44.2004)
000889721 0247_ $$2ISSN$$a1549-9596
000889721 0247_ $$2ISSN$$a1549-960X
000889721 0247_ $$2Handle$$a2128/26808
000889721 0247_ $$2altmetric$$aaltmetric:94161142
000889721 0247_ $$2pmid$$a33174726
000889721 0247_ $$2WOS$$aWOS:000608875100080
000889721 037__ $$aFZJ-2021-00343
000889721 082__ $$a540
000889721 1001_ $$0P:(DE-Juel1)176383$$aSamantray, Suman$$b0$$ufzj
000889721 245__ $$aDifferent Force Fields Give Rise to Different Amyloid Aggregation Pathways in Molecular Dynamics Simulations
000889721 260__ $$aWashington, DC$$bAmerican Chemical Society64160$$c2020
000889721 3367_ $$2DRIVER$$aarticle
000889721 3367_ $$2DataCite$$aOutput Types/Journal article
000889721 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610983410_8202
000889721 3367_ $$2BibTeX$$aARTICLE
000889721 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889721 3367_ $$00$$2EndNote$$aJournal Article
000889721 520__ $$aThe progress toward understanding the molecularbasis of Alzheimers’s disease is strongly connected to elucidatingthe early aggregation events of the amyloid-β (Aβ) peptide.Molecular dynamics (MD) simulations provide a viable techniqueto study the aggregation of Aβ into oligomers with high spatial andtemporal resolution. However, the results of an MD simulation canonly be as good as the underlying force field. A recent study by ourgroup showed that none of the common force fields can distinguishbetween aggregation-prone and nonaggregating peptide sequences, producing a similar and in most cases too fast aggregationkinetics for all peptides. Since then, new force fields specially designed for intrinsically disordered proteins such as Aβ weredeveloped. Here, we assess the applicability of these new force fields to studying peptide aggregation using the Aβ16−22 peptide andmutations of it as test case. We investigate their performance in modeling the monomeric state, the aggregation into oligomers, andthe stability of the aggregation end product, i.e., the fibrillar state. A main finding is that changing the force field has a stronger effecton the simulated aggregation pathway than changing the peptide sequence. Also the new force fields are not able to reproduce theexperimental aggregation propensity order of the peptides. Dissecting the various energy contributions shows that AMBER99SB-dispoverestimates the interactions between the peptides and water, thereby inhibiting peptide aggregation. More promising results areobtained with CHARMM36m and especially its version with increased protein−water interactions. It is thus recommended to usethis force field for peptide aggregation simulations and base future reparameterizations on it.
000889721 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000889721 588__ $$aDataset connected to CrossRef
000889721 7001_ $$0P:(DE-Juel1)176537$$aYin, Feng$$b1$$ufzj
000889721 7001_ $$0P:(DE-Juel1)178946$$aKav, Batuhan$$b2$$ufzj
000889721 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b3$$eCorresponding author
000889721 773__ $$0PERI:(DE-600)1491237-5$$a10.1021/acs.jcim.0c01063$$gVol. 60, no. 12, p. 6462 - 6475$$n12$$p6462 - 6475$$tJournal of chemical information and modeling$$v60$$x1549-960X$$y2020
000889721 8564_ $$uhttps://juser.fz-juelich.de/record/889721/files/acs.jcim.0c01063.pdf
000889721 8564_ $$uhttps://juser.fz-juelich.de/record/889721/files/2020.09.09.290320v1.full.pdf$$yPublished on 2020-11-11. Available in OpenAccess from 2021-11-11.
000889721 909CO $$ooai:juser.fz-juelich.de:889721$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176383$$aForschungszentrum Jülich$$b0$$kFZJ
000889721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176537$$aForschungszentrum Jülich$$b1$$kFZJ
000889721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178946$$aForschungszentrum Jülich$$b2$$kFZJ
000889721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b3$$kFZJ
000889721 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000889721 9141_ $$y2020
000889721 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000889721 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000889721 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889721 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM INF MODEL : 2018$$d2020-08-28
000889721 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000889721 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000889721 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-28
000889721 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-28
000889721 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000889721 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-28$$wger
000889721 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000889721 920__ $$lyes
000889721 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000889721 980__ $$ajournal
000889721 980__ $$aVDB
000889721 980__ $$aUNRESTRICTED
000889721 980__ $$aI:(DE-Juel1)IBI-7-20200312
000889721 9801_ $$aFullTexts