001     889722
005     20210208142412.0
024 7 _ |a 10.1016/j.bioorg.2020.104012
|2 doi
024 7 _ |a 0045-2068
|2 ISSN
024 7 _ |a 1090-2120
|2 ISSN
024 7 _ |a 2128/26813
|2 Handle
024 7 _ |a altmetric:86131177
|2 altmetric
024 7 _ |a 32683138
|2 pmid
024 7 _ |a WOS:000552635800006
|2 WOS
037 _ _ |a FZJ-2021-00344
082 _ _ |a 540
100 1 _ |a Deike, Stefanie
|0 P:(DE-HGF)0
|b 0
245 _ _ |a β-Turn mimetic synthetic peptides as amyloid-β aggregation inhibitors
260 _ _ |a San Diego, Calif.
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611046117_10028
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Aggregation of amyloid peptides results in severe neurodegenerative diseases. While the fibril structures of Aβ40and Aβ42 have been described recently, resolution of the aggregation pathway and evaluation of potent inhibitorsstill remains elusive, in particular in view of the hairpin-region of Aβ40. We here report the preparationof beta-turn mimetic conjugates containing synthetic turn mimetic structures in the turn region of Aβ40 and Aβ16-35, replacing 2 amino acids in the turn-region G25 – K28. The structure of the turn mimic induces both, accelerationof fibrillation and the complete inhibition of fibrillation, confirming the importance of the turn regionon the aggregation. Replacing position G25-S26 provided the best inhibition effect for both beta-turn mimetics,the bicyclic BTD 1 and the aromatic TAA 2, while positions N27-K28 and V24-G25 showed only weaker or noinhibitory effects. When comparing different turn mimetics at the same position (G25-S26), conjugate 1a bearingthe BTD turn showed the best inhibition of Aβ40 aggregation, while 5-amino-valeric acid 4a showed the weakesteffect. Thus there is a pronounced impact on fibrillation with the chemical nature of the embedded beta-turnmimic:the conformationally constrained turns 1 and 2 lead to a significantly reduced fibrillation, even inhibitingfibrillation of native Aβ40 when added in amounts down to 1/10, whereas the more flexible beta-turn-mimics 4-amino-benzoic acid 3a and 5-amino-valeric acid 4a lead to enhanced fibrillation. Toxicity-testing of the mostsuccessful conjugate showed only minor toxicity in cell-viability assays using the N2a cell line. Structuraldownsizing lead to the short fragment BTD/peptide Aβ16-35 as inhibitor of the aggregation of Aβ40, opening largepotential for further small peptide based inhibitors.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rothemund, Sven
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Voigt, Bruno
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Samantray, Suman
|0 P:(DE-Juel1)176383
|b 3
|u fzj
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 4
|u fzj
700 1 _ |a Binder, Wolfgang H.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.bioorg.2020.104012
|g Vol. 101, p. 104012 -
|0 PERI:(DE-600)1462232-4
|p 104012 -
|t Bioorganic chemistry
|v 101
|y 2020
|x 0045-2068
856 4 _ |u https://juser.fz-juelich.de/record/889722/files/Samantray_2020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889722
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176383
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Physical Basis of Diseases
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-09
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOORG CHEM : 2018
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2020-09-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21