000889724 001__ 889724 000889724 005__ 20210208142403.0 000889724 0247_ $$2doi$$a10.1016/j.sbi.2020.01.008 000889724 0247_ $$2ISSN$$a0959-440X 000889724 0247_ $$2ISSN$$a1879-033X 000889724 0247_ $$2Handle$$a2128/26823 000889724 0247_ $$2altmetric$$aaltmetric:74994314 000889724 0247_ $$2pmid$$a32028106 000889724 0247_ $$2WOS$$aWOS:000525828700024 000889724 037__ $$aFZJ-2021-00345 000889724 082__ $$a570 000889724 1001_ $$0P:(DE-Juel1)176479$$aGeraets, James$$b0$$ufzj 000889724 245__ $$aIntegrating cryo-EM and NMR data 000889724 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020 000889724 3367_ $$2DRIVER$$aarticle 000889724 3367_ $$2DataCite$$aOutput Types/Journal article 000889724 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611068246_24361 000889724 3367_ $$2BibTeX$$aARTICLE 000889724 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000889724 3367_ $$00$$2EndNote$$aJournal Article 000889724 520__ $$aSingle-particle cryo-electron microscopy (cryo-EM) is increasingly used as a technique to determine the atomic structure of challenging biological systems. Recent advances in microscope engineering, electron detection, and image processing have allowed the structural determination of bigger and more flexible targets than possible with the complementary techniques X-ray crystallography and NMR spectroscopy. However, there exist many biological targets for which atomic resolution cannot be currently achieved with cryo-EM, making unambiguous determination of the protein structure impossible. Although determining the structure of large biological systems using solely NMR is often difficult, highly complementary experimental atomic-level data for each molecule can be derived from the spectra, and used in combination with cryo-EM data. We review here strategies with which both techniques can be synergistically combined, in order to reach detail and understanding unattainable by each technique acting alone; and the types of biological systems for which such an approach would be desirable. 000889724 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000889724 588__ $$aDataset connected to CrossRef 000889724 7001_ $$0P:(DE-Juel1)174468$$aPothula, Karunakar R$$b1$$ufzj 000889724 7001_ $$0P:(DE-Juel1)132018$$aSchröder, Gunnar F$$b2$$eCorresponding author$$ufzj 000889724 773__ $$0PERI:(DE-600)2019233-2$$a10.1016/j.sbi.2020.01.008$$gVol. 61, p. 173 - 181$$p173 - 181$$tCurrent opinion in structural biology$$v61$$x0959-440X$$y2020 000889724 8564_ $$uhttps://juser.fz-juelich.de/record/889724/files/Autorenmanuskript_Integrating%20cryo-EM%20and%20NMR%20data.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510 000889724 8564_ $$uhttps://juser.fz-juelich.de/record/889724/files/Integrating%20cryo-EM%20and%20NMR%20data-1.pdf 000889724 909CO $$ooai:juser.fz-juelich.de:889724$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000889724 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176479$$aForschungszentrum Jülich$$b0$$kFZJ 000889724 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174468$$aForschungszentrum Jülich$$b1$$kFZJ 000889724 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132018$$aForschungszentrum Jülich$$b2$$kFZJ 000889724 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000889724 9141_ $$y2020 000889724 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCURR OPIN STRUC BIOL : 2018$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000889724 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCURR OPIN STRUC BIOL : 2018$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03 000889724 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-03$$wger 000889724 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03 000889724 920__ $$lyes 000889724 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0 000889724 980__ $$ajournal 000889724 980__ $$aVDB 000889724 980__ $$aUNRESTRICTED 000889724 980__ $$aI:(DE-Juel1)IBI-7-20200312 000889724 9801_ $$aFullTexts