000889724 001__ 889724
000889724 005__ 20210208142403.0
000889724 0247_ $$2doi$$a10.1016/j.sbi.2020.01.008
000889724 0247_ $$2ISSN$$a0959-440X
000889724 0247_ $$2ISSN$$a1879-033X
000889724 0247_ $$2Handle$$a2128/26823
000889724 0247_ $$2altmetric$$aaltmetric:74994314
000889724 0247_ $$2pmid$$a32028106
000889724 0247_ $$2WOS$$aWOS:000525828700024
000889724 037__ $$aFZJ-2021-00345
000889724 082__ $$a570
000889724 1001_ $$0P:(DE-Juel1)176479$$aGeraets, James$$b0$$ufzj
000889724 245__ $$aIntegrating cryo-EM and NMR data
000889724 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000889724 3367_ $$2DRIVER$$aarticle
000889724 3367_ $$2DataCite$$aOutput Types/Journal article
000889724 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611068246_24361
000889724 3367_ $$2BibTeX$$aARTICLE
000889724 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889724 3367_ $$00$$2EndNote$$aJournal Article
000889724 520__ $$aSingle-particle cryo-electron microscopy (cryo-EM) is increasingly used as a technique to determine the atomic structure of challenging biological systems. Recent advances in microscope engineering, electron detection, and image processing have allowed the structural determination of bigger and more flexible targets than possible with the complementary techniques X-ray crystallography and NMR spectroscopy. However, there exist many biological targets for which atomic resolution cannot be currently achieved with cryo-EM, making unambiguous determination of the protein structure impossible. Although determining the structure of large biological systems using solely NMR is often difficult, highly complementary experimental atomic-level data for each molecule can be derived from the spectra, and used in combination with cryo-EM data. We review here strategies with which both techniques can be synergistically combined, in order to reach detail and understanding unattainable by each technique acting alone; and the types of biological systems for which such an approach would be desirable.
000889724 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000889724 588__ $$aDataset connected to CrossRef
000889724 7001_ $$0P:(DE-Juel1)174468$$aPothula, Karunakar R$$b1$$ufzj
000889724 7001_ $$0P:(DE-Juel1)132018$$aSchröder, Gunnar F$$b2$$eCorresponding author$$ufzj
000889724 773__ $$0PERI:(DE-600)2019233-2$$a10.1016/j.sbi.2020.01.008$$gVol. 61, p. 173 - 181$$p173 - 181$$tCurrent opinion in structural biology$$v61$$x0959-440X$$y2020
000889724 8564_ $$uhttps://juser.fz-juelich.de/record/889724/files/Autorenmanuskript_Integrating%20cryo-EM%20and%20NMR%20data.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000889724 8564_ $$uhttps://juser.fz-juelich.de/record/889724/files/Integrating%20cryo-EM%20and%20NMR%20data-1.pdf
000889724 909CO $$ooai:juser.fz-juelich.de:889724$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889724 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176479$$aForschungszentrum Jülich$$b0$$kFZJ
000889724 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174468$$aForschungszentrum Jülich$$b1$$kFZJ
000889724 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132018$$aForschungszentrum Jülich$$b2$$kFZJ
000889724 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000889724 9141_ $$y2020
000889724 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCURR OPIN STRUC BIOL : 2018$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889724 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCURR OPIN STRUC BIOL : 2018$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000889724 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-03$$wger
000889724 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000889724 920__ $$lyes
000889724 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000889724 980__ $$ajournal
000889724 980__ $$aVDB
000889724 980__ $$aUNRESTRICTED
000889724 980__ $$aI:(DE-Juel1)IBI-7-20200312
000889724 9801_ $$aFullTexts