000889726 001__ 889726
000889726 005__ 20210208142343.0
000889726 0247_ $$2doi$$a10.1073/pnas.2004445117
000889726 0247_ $$2ISSN$$a0027-8424
000889726 0247_ $$2ISSN$$a1091-6490
000889726 0247_ $$2Handle$$a2128/26818
000889726 0247_ $$2altmetric$$aaltmetric:88063060
000889726 0247_ $$2pmid$$a32788370
000889726 0247_ $$2WOS$$aWOS:000572978200009
000889726 037__ $$aFZJ-2021-00347
000889726 082__ $$a500
000889726 1001_ $$00000-0002-8043-4655$$aFisette, Olivier$$b0
000889726 245__ $$aAtomistic structure and dynamics of the human MHC-I peptide-loading complex
000889726 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2020
000889726 3367_ $$2DRIVER$$aarticle
000889726 3367_ $$2DataCite$$aOutput Types/Journal article
000889726 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611058630_28999
000889726 3367_ $$2BibTeX$$aARTICLE
000889726 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889726 3367_ $$00$$2EndNote$$aJournal Article
000889726 520__ $$aThe major histocompatibility complex class-I (MHC-I) peptide-loading complex (PLC) is a cornerstone of the human adaptive immune system, being responsible for processing antigens that allow killer T cells to distinguish between healthy and compromised cells. Based on a recent low-resolution cryo-electron microscopy (cryo-EM) structure of this large membrane-bound protein complex, we report an atomistic model of the PLC and study its conformational dynamics on the multimicrosecond time scale using all-atom molecular dynamics (MD) simulations in an explicit lipid bilayer and water environment (1.6 million atoms in total). The PLC has a layered structure, with two editing modules forming a flexible protein belt surrounding a stable, catalytically active core. Tapasin plays a central role in the PLC, stabilizing the MHC-I binding groove in a conformation reminiscent of antigen-loaded MHC-I. The MHC-I–linked glycan steers a tapasin loop involved in peptide editing toward the binding groove. Tapasin conformational dynamics are also affected by calreticulin through a conformational selection mechanism that facilitates MHC-I recruitment into the complex.
000889726 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000889726 588__ $$aDataset connected to CrossRef
000889726 7001_ $$0P:(DE-Juel1)132018$$aSchröder, Gunnar F.$$b1$$ufzj
000889726 7001_ $$00000-0002-8498-3061$$aSchäfer, Lars V.$$b2$$eCorresponding author
000889726 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2004445117$$gVol. 117, no. 34, p. 20597 - 20606$$n34$$p20597 - 20606$$tProceedings of the National Academy of Sciences of the United States of America$$v117$$x1091-6490$$y2020
000889726 8564_ $$uhttps://juser.fz-juelich.de/record/889726/files/Atomistic%20structure%20and%20dynamics%20of%20the%20human%20MHC-I%20peptide-loading%20complex-1.pdf$$yRestricted
000889726 8564_ $$uhttps://juser.fz-juelich.de/record/889726/files/Blanko_Atomistic%20structure%20and%20dynamics%20of%20the%20human%20MHC-I%20peptide-loading%20complex.pdf$$yPublished on 2020-08-11. Available in OpenAccess from 2021-02-11.$$zStatID:(DE-HGF)0510
000889726 909CO $$ooai:juser.fz-juelich.de:889726$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132018$$aForschungszentrum Jülich$$b1$$kFZJ
000889726 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000889726 9141_ $$y2020
000889726 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889726 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2018$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2018$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-08-22$$wger
000889726 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-22
000889726 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000889726 920__ $$lyes
000889726 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000889726 980__ $$ajournal
000889726 980__ $$aVDB
000889726 980__ $$aUNRESTRICTED
000889726 980__ $$aI:(DE-Juel1)IBI-7-20200312
000889726 9801_ $$aFullTexts