000889727 001__ 889727
000889727 005__ 20210208142347.0
000889727 0247_ $$2doi$$a10.1038/s41467-020-19611-1
000889727 0247_ $$2Handle$$a2128/26805
000889727 0247_ $$2altmetric$$aaltmetric:94204160
000889727 0247_ $$2pmid$$a33188213
000889727 0247_ $$2WOS$$aWOS:000594647500010
000889727 037__ $$aFZJ-2021-00348
000889727 082__ $$a500
000889727 1001_ $$0P:(DE-HGF)0$$aZinke, Maximilian$$b0
000889727 245__ $$aArchitecture of the flexible tail tube of bacteriophage SPP1
000889727 260__ $$a[London]$$bNature Publishing Group UK$$c2020
000889727 3367_ $$2DRIVER$$aarticle
000889727 3367_ $$2DataCite$$aOutput Types/Journal article
000889727 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610982640_12015
000889727 3367_ $$2BibTeX$$aARTICLE
000889727 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889727 3367_ $$00$$2EndNote$$aJournal Article
000889727 520__ $$aBacteriophage SPP1 is a double-stranded DNA virus of the Siphoviridae family that infects the bacterium Bacillus subtilis. This family of phages features a long, flexible, non-contractile tail that has been difficult to characterize structurally. Here, we present the atomic structure of the tail tube of phage SPP1. Our hybrid structure is based on the integration of structural restraints from solid-state nuclear magnetic resonance (NMR) and a density map from cryo-EM. We show that the tail tube protein gp17.1 organizes into hexameric rings that are stacked by flexible linker domains and, thus, form a hollow flexible tube with a negatively charged lumen suitable for the transport of DNA. Additionally, we assess the dynamics of the system by combining relaxation measurements with variances in density maps.
000889727 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000889727 588__ $$aDataset connected to CrossRef
000889727 7001_ $$00000-0002-5154-5217$$aSachowsky, Katrin A. A.$$b1
000889727 7001_ $$0P:(DE-HGF)0$$aÖster, Carl$$b2
000889727 7001_ $$0P:(DE-HGF)0$$aZinn-Justin, Sophie$$b3
000889727 7001_ $$00000-0001-6056-5888$$aRavelli, Raimond$$b4
000889727 7001_ $$0P:(DE-Juel1)132018$$aSchröder, Gunnar F.$$b5
000889727 7001_ $$00000-0002-2188-5667$$aHabeck, Michael$$b6
000889727 7001_ $$00000-0002-7534-5973$$aLange, Adam$$b7$$eCorresponding author
000889727 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-020-19611-1$$gVol. 11, no. 1, p. 5759$$n1$$p5759$$tNature Communications$$v11$$x2041-1723$$y2020
000889727 8564_ $$uhttps://juser.fz-juelich.de/record/889727/files/Architecture%20of%20the%20flexible%20tail%20tube%20of%20bacteriophage%20SPP1.pdf$$yOpenAccess
000889727 909CO $$ooai:juser.fz-juelich.de:889727$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132018$$aForschungszentrum Jülich$$b5$$kFZJ
000889727 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000889727 9141_ $$y2020
000889727 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2018$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889727 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-25
000889727 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889727 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2018$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25
000889727 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-25
000889727 920__ $$lyes
000889727 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000889727 980__ $$ajournal
000889727 980__ $$aVDB
000889727 980__ $$aUNRESTRICTED
000889727 980__ $$aI:(DE-Juel1)IBI-7-20200312
000889727 9801_ $$aFullTexts