001     889731
005     20230111074229.0
024 7 _ |a 10.1016/j.sbi.2020.10.019
|2 doi
024 7 _ |a 0959-440X
|2 ISSN
024 7 _ |a 1879-033X
|2 ISSN
024 7 _ |a 2128/26820
|2 Handle
024 7 _ |a altmetric:95752601
|2 altmetric
024 7 _ |a 33279865
|2 pmid
024 7 _ |a WOS:000647703900007
|2 WOS
037 _ _ |a FZJ-2021-00352
082 _ _ |a 570
100 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Amyloid aggregation simulations: challenges, advances and perspectives
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640941605_7048
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In amyloid aggregation diseases soluble proteins coalesce intoa wide array of undesirable structures, ranging througholigomers and prefibrillar assemblies to highly ordered amyloidfibrils and plaques. Explicit-solvent all-atom moleculardynamics (MD) simulations of amyloid aggregation have beenperformed for almost 20 years, revealing valuable informationabout this phenomenon. However, these simulations arechallenged by three main problems. Firstly, current force fieldsmodeling amyloid aggregation are insufficiently accurate.Secondly, the protein concentrations in MD simulations areusually orders of magnitude higher than those used in vitro orfound in vivo, which has direct consequences on theaggregates that form. Finally, the third problem is the wellknowntime-scale limit of MD simulations. In this review Ihighlight recent approaches to overcome these threelimitations.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1016/j.sbi.2020.10.019
|g Vol. 67, p. 145 - 152
|0 PERI:(DE-600)2019233-2
|p 145 - 152
|t Current opinion in structural biology
|v 67
|y 2021
|x 0959-440X
856 4 _ |u https://juser.fz-juelich.de/record/889731/files/Amyloid%20aggregation%20simulations%20challenges%2C%20advances%20and%20perspectives-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/889731/files/Autorenmanuskript_Amyloid%20aggregation%20simulations%3A%20challenges%2C%20advances%20and%20perspectives.pdf
|y Published on 2020-12-03. Available in OpenAccess from 2021-12-03.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:889731
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132024
913 0 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Physical Basis of Diseases
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CURR OPIN STRUC BIOL : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CURR OPIN STRUC BIOL : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21