001     889770
005     20230111074229.0
024 7 _ |a 10.1016/j.jcis.2020.08.094
|2 doi
024 7 _ |a 0021-9797
|2 ISSN
024 7 _ |a 1095-7103
|2 ISSN
024 7 _ |a 2128/26833
|2 Handle
024 7 _ |a 32911421
|2 pmid
024 7 _ |a WOS:000600666100002
|2 WOS
024 7 _ |a altmetric:102068257
|2 altmetric
037 _ _ |a FZJ-2021-00383
082 _ _ |a 540
100 1 _ |a Nielsen, Josefine Eilsø
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Beyond structural models for the mode of action: How natural antimicrobial peptides affect lipid transport
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636724714_21148
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hypothesis: Most textbook models for antimicrobial peptides (AMP) mode of action are focused on structural effects and pore formation in lipid membranes, while these deformations have been shown to require high concentrations of peptide bound to the membrane. Even insertion of low amounts of peptides in the membrane is hypothesized to affect the transmembrane transport of lipids, which may play a key role in the peptide effect on membranes. Experiments: Here we combine state-of-the-art small angle X-ray/neutron scattering (SAXS/SANS) techniques to systematically study the effect of a broad selection of natural AMPs on lipid membranes. Our approach enables us to relate the structural interactions, effects on lipid exchange processes, and thermodynamic parameters, directly in the same model system. Findings: The studied peptides, indolicidin, aurein 1.2, magainin II, cecropin A and LL-37 all cause a general acceleration of essential lipid transport processes, without necessarily altering the overall structure of the lipid membranes or creating organized pore-like structures. We observe rapid scrambling of the lipid composition associated with enhanced lipid transport which may trigger lethal signaling processes and enhance ion transport. The reported membrane effects provide a plausible canonical mechanism of AMP-membrane interaction and can reconcile many of the previously observed effects of AMPs on bacterial membranes.
536 _ _ |a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|0 G:(DE-HGF)POF3-6215
|c POF3-621
|f POF III
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
536 _ _ |a 6G15 - FRM II / MLZ (POF3-6G15)
|0 G:(DE-HGF)POF3-6G15
|c POF3-6G15
|f POF III
|x 2
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 3
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 4
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS2-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-3: Very small angle scattering diffractometer with focusing mirror
|f NL3auS
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS3-20140101
|5 EXP:(DE-MLZ)KWS3-20140101
|6 EXP:(DE-MLZ)NL3auS-20140101
|x 1
700 1 _ |a Bjørnestad, Victoria Ariel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pipich, Vitaliy
|0 P:(DE-Juel1)130893
|b 2
700 1 _ |a Jenssen, Håvard
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lund, Reidar
|0 0000-0001-8017-6396
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.jcis.2020.08.094
|g Vol. 582, p. 793 - 802
|0 PERI:(DE-600)1469021-4
|n Part B
|p 793 - 802
|t Journal of colloid and interface science
|v 582
|y 2021
|x 0021-9797
856 4 _ |u https://juser.fz-juelich.de/record/889770/files/1-s2.0-S0021979720311413-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/889770/files/revised_JCIS_August20_final_annotated.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889770
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130893
913 0 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 0
913 0 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
913 0 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|x 2
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J COLLOID INTERF SCI : 2018
|d 2020-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J COLLOID INTERF SCI : 2018
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 2
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21