000889774 001__ 889774
000889774 005__ 20210208142409.0
000889774 0247_ $$2doi$$a10.1063/1.5144267
000889774 0247_ $$2ISSN$$a0021-9606
000889774 0247_ $$2ISSN$$a1089-7690
000889774 0247_ $$2ISSN$$a1520-9032
000889774 0247_ $$2Handle$$a2128/26816
000889774 0247_ $$2altmetric$$aaltmetric:79263163
000889774 0247_ $$2pmid$$a32268762
000889774 0247_ $$2WOS$$aWOS:000524553600002
000889774 037__ $$aFZJ-2021-00387
000889774 082__ $$a530
000889774 1001_ $$00000-0002-5656-3975$$aLischka, Hans$$b0$$eCorresponding author
000889774 245__ $$aThe generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry
000889774 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2020
000889774 3367_ $$2DRIVER$$aarticle
000889774 3367_ $$2DataCite$$aOutput Types/Journal article
000889774 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611052977_10732
000889774 3367_ $$2BibTeX$$aARTICLE
000889774 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889774 3367_ $$00$$2EndNote$$aJournal Article
000889774 520__ $$aThe core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.
000889774 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000889774 588__ $$aDataset connected to CrossRef
000889774 7001_ $$00000-0002-0272-0824$$aShepard, Ron$$b1
000889774 7001_ $$0P:(DE-Juel1)132204$$aMüller, Thomas$$b2
000889774 7001_ $$00000-0003-1885-3557$$aSzalay, Péter G.$$b3
000889774 7001_ $$0P:(DE-HGF)0$$aPitzer, Russell M.$$b4
000889774 7001_ $$00000-0003-4891-6512$$aAquino, Adelia J. A.$$b5
000889774 7001_ $$00000-0002-6048-935X$$aAraújo do Nascimento, Mayzza M.$$b6
000889774 7001_ $$00000-0001-9336-6607$$aBarbatti, Mario$$b7
000889774 7001_ $$00000-0002-2250-4125$$aBelcher, Lachlan T.$$b8
000889774 7001_ $$0P:(DE-HGF)0$$aBlaudeau, Jean-Philippe$$b9
000889774 7001_ $$00000-0002-8492-1223$$aBorges, Itamar$$b10
000889774 7001_ $$0P:(DE-HGF)0$$aBrozell, Scott R.$$b11
000889774 7001_ $$00000-0001-7330-7554$$aCarter, Emily A.$$b12
000889774 7001_ $$0P:(DE-HGF)0$$aDas, Anita$$b13
000889774 7001_ $$0P:(DE-HGF)0$$aGidofalvi, Gergely$$b14
000889774 7001_ $$00000-0001-5112-794X$$aGonzález, Leticia$$b15
000889774 7001_ $$00000-0002-0560-5100$$aHase, William L.$$b16
000889774 7001_ $$0P:(DE-HGF)0$$aKedziora, Gary$$b17
000889774 7001_ $$00000-0002-7930-3260$$aKertesz, Miklos$$b18
000889774 7001_ $$00000-0002-1627-7093$$aKossoski, Fábris$$b19
000889774 7001_ $$00000-0002-2064-3463$$aMachado, Francisco B. C.$$b20
000889774 7001_ $$00000-0003-2773-3979$$aMatsika, Spiridoula$$b21
000889774 7001_ $$00000-0002-5878-1984$$ado Monte, Silmar A.$$b22
000889774 7001_ $$0P:(DE-HGF)0$$aNachtigallová, Dana$$b23
000889774 7001_ $$00000-0003-3011-5223$$aNieman, Reed$$b24
000889774 7001_ $$00000-0001-6363-2310$$aOppel, Markus$$b25
000889774 7001_ $$00000-0003-2878-3070$$aParish, Carol A.$$b26
000889774 7001_ $$00000-0003-0751-148X$$aPlasser, Felix$$b27
000889774 7001_ $$00000-0002-2577-7831$$aSpada, Rene F. K.$$b28
000889774 7001_ $$0P:(DE-HGF)0$$aStahlberg, Eric A.$$b29
000889774 7001_ $$00000-0002-1015-7824$$aVentura, Elizete$$b30
000889774 7001_ $$00000-0002-5446-1350$$aYarkony, David R.$$b31
000889774 7001_ $$00000-0001-9276-8022$$aZhang, Zhiyong$$b32
000889774 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5144267$$gVol. 152, no. 13, p. 134110 -$$n13$$p134110 -$$tThe journal of chemical physics$$v152$$x1089-7690$$y2020
000889774 8564_ $$uhttps://juser.fz-juelich.de/record/889774/files/1.5144267.pdf$$yPublished on 2020-04-06. Available in OpenAccess from 2021-04-06.
000889774 8564_ $$uhttps://juser.fz-juelich.de/record/889774/files/JCP19-AR-ESS2020-05373.pdf$$yPublished on 2020-04-06. Available in OpenAccess from 2021-04-06.
000889774 909CO $$ooai:juser.fz-juelich.de:889774$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132204$$aForschungszentrum Jülich$$b2$$kFZJ
000889774 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000889774 9141_ $$y2020
000889774 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889774 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2018$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-05$$wger
000889774 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-05
000889774 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000889774 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000889774 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000889774 980__ $$ajournal
000889774 980__ $$aVDB
000889774 980__ $$aUNRESTRICTED
000889774 980__ $$aI:(DE-Juel1)JSC-20090406
000889774 9801_ $$aFullTexts