001     889774
005     20210208142409.0
024 7 _ |a 10.1063/1.5144267
|2 doi
024 7 _ |a 0021-9606
|2 ISSN
024 7 _ |a 1089-7690
|2 ISSN
024 7 _ |a 1520-9032
|2 ISSN
024 7 _ |a 2128/26816
|2 Handle
024 7 _ |a altmetric:79263163
|2 altmetric
024 7 _ |a 32268762
|2 pmid
024 7 _ |a WOS:000524553600002
|2 WOS
037 _ _ |a FZJ-2021-00387
082 _ _ |a 530
100 1 _ |a Lischka, Hans
|0 0000-0002-5656-3975
|b 0
|e Corresponding author
245 _ _ |a The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry
260 _ _ |a Melville, NY
|c 2020
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611052977_10732
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shepard, Ron
|0 0000-0002-0272-0824
|b 1
700 1 _ |a Müller, Thomas
|0 P:(DE-Juel1)132204
|b 2
700 1 _ |a Szalay, Péter G.
|0 0000-0003-1885-3557
|b 3
700 1 _ |a Pitzer, Russell M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Aquino, Adelia J. A.
|0 0000-0003-4891-6512
|b 5
700 1 _ |a Araújo do Nascimento, Mayzza M.
|0 0000-0002-6048-935X
|b 6
700 1 _ |a Barbatti, Mario
|0 0000-0001-9336-6607
|b 7
700 1 _ |a Belcher, Lachlan T.
|0 0000-0002-2250-4125
|b 8
700 1 _ |a Blaudeau, Jean-Philippe
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Borges, Itamar
|0 0000-0002-8492-1223
|b 10
700 1 _ |a Brozell, Scott R.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Carter, Emily A.
|0 0000-0001-7330-7554
|b 12
700 1 _ |a Das, Anita
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gidofalvi, Gergely
|0 P:(DE-HGF)0
|b 14
700 1 _ |a González, Leticia
|0 0000-0001-5112-794X
|b 15
700 1 _ |a Hase, William L.
|0 0000-0002-0560-5100
|b 16
700 1 _ |a Kedziora, Gary
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Kertesz, Miklos
|0 0000-0002-7930-3260
|b 18
700 1 _ |a Kossoski, Fábris
|0 0000-0002-1627-7093
|b 19
700 1 _ |a Machado, Francisco B. C.
|0 0000-0002-2064-3463
|b 20
700 1 _ |a Matsika, Spiridoula
|0 0000-0003-2773-3979
|b 21
700 1 _ |a do Monte, Silmar A.
|0 0000-0002-5878-1984
|b 22
700 1 _ |a Nachtigallová, Dana
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Nieman, Reed
|0 0000-0003-3011-5223
|b 24
700 1 _ |a Oppel, Markus
|0 0000-0001-6363-2310
|b 25
700 1 _ |a Parish, Carol A.
|0 0000-0003-2878-3070
|b 26
700 1 _ |a Plasser, Felix
|0 0000-0003-0751-148X
|b 27
700 1 _ |a Spada, Rene F. K.
|0 0000-0002-2577-7831
|b 28
700 1 _ |a Stahlberg, Eric A.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Ventura, Elizete
|0 0000-0002-1015-7824
|b 30
700 1 _ |a Yarkony, David R.
|0 0000-0002-5446-1350
|b 31
700 1 _ |a Zhang, Zhiyong
|0 0000-0001-9276-8022
|b 32
773 _ _ |a 10.1063/1.5144267
|g Vol. 152, no. 13, p. 134110 -
|0 PERI:(DE-600)1473050-9
|n 13
|p 134110 -
|t The journal of chemical physics
|v 152
|y 2020
|x 1089-7690
856 4 _ |y Published on 2020-04-06. Available in OpenAccess from 2021-04-06.
|u https://juser.fz-juelich.de/record/889774/files/1.5144267.pdf
856 4 _ |y Published on 2020-04-06. Available in OpenAccess from 2021-04-06.
|u https://juser.fz-juelich.de/record/889774/files/JCP19-AR-ESS2020-05373.pdf
909 C O |o oai:juser.fz-juelich.de:889774
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132204
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-05
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM PHYS : 2018
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-05
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-05
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21