000889790 001__ 889790
000889790 005__ 20240507205533.0
000889790 0247_ $$2doi$$a10.1002/adbi.202000248
000889790 0247_ $$2Handle$$a2128/27195
000889790 0247_ $$2WOS$$aWOS:000672523300008
000889790 037__ $$aFZJ-2021-00403
000889790 082__ $$a570
000889790 1001_ $$0P:(DE-Juel1)169481$$aMilos, Frano$$b0
000889790 245__ $$aPolymer Nanopillars Induce Increased Paxillin Adhesion Assembly and Promote Axon Growth in Primary Cortical Neurons
000889790 260__ $$aWeinheim$$bWiley-VCH$$c2021
000889790 3367_ $$2DRIVER$$aarticle
000889790 3367_ $$2DataCite$$aOutput Types/Journal article
000889790 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715085689_30445
000889790 3367_ $$2BibTeX$$aARTICLE
000889790 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889790 3367_ $$00$$2EndNote$$aJournal Article
000889790 520__ $$aThe complexity of the extracellular matrix consists of micro‐ and nanoscale structures that influence neuronal development through contact guidance. Substrates with defined topographic cues mimic the complex extracellular environment and can improve the interface between cells and biomedical devices as well as potentially serve as tissue engineering scaffolds. This study investigates axon development and growth of primary cortical neurons on OrmoComp nanopillars of various dimensions. Neuronal somas and neurites form adhesions and F‐actin accumulations around the pillars indicating a close contact to the topography. In addition, higher pillars (400 nm) confine the growing neurites, resulting in greater neurite alignment to the topographical pattern compared to lower pillars (100 nm). A comprehensive analysis of growth cone dynamics during axon development shows that nanopillars induce earlier axon establishment and change the periodicity of growth cone dynamics by promoting elongation. This results in longer axons compared to the flat substrate. Finally, the increase in surface area available for growth cone coupling provided by nanopillar sidewalls is correlated with increased assembly of paxillin‐rich point contact adhesions and a reduction in actin retrograde flow rates allowing for accelerated and persistent neurite outgrowth.
000889790 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000889790 588__ $$aDataset connected to CrossRef
000889790 7001_ $$0P:(DE-Juel1)164336$$aBelu, Andreea$$b1
000889790 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b2
000889790 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b3
000889790 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4$$eCorresponding author
000889790 773__ $$0PERI:(DE-600)3027224-5$$a10.1002/adbi.202000248$$gp. 2000248 -$$n2$$p2000248$$tAdvanced biology$$v5$$x2366-7478$$y2021
000889790 8564_ $$uhttps://juser.fz-juelich.de/record/889790/files/adbi.202000248.pdf$$yOpenAccess
000889790 8767_ $$d2021-01-19$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000889790 909CO $$ooai:juser.fz-juelich.de:889790$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000889790 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169481$$aForschungszentrum Jülich$$b0$$kFZJ
000889790 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b2$$kFZJ
000889790 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b3$$kFZJ
000889790 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ
000889790 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000889790 9130_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000889790 9141_ $$y2021
000889790 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889790 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000889790 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-27$$wger
000889790 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000889790 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000889790 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV BIOL-GER : 2022$$d2023-10-27
000889790 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000889790 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
000889790 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
000889790 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000889790 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
000889790 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
000889790 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-27
000889790 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000889790 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000889790 980__ $$ajournal
000889790 980__ $$aVDB
000889790 980__ $$aI:(DE-Juel1)IBI-3-20200312
000889790 980__ $$aAPC
000889790 980__ $$aUNRESTRICTED
000889790 9801_ $$aAPC
000889790 9801_ $$aFullTexts