001     889790
005     20240507205533.0
024 7 _ |a 10.1002/adbi.202000248
|2 doi
024 7 _ |a 2128/27195
|2 Handle
024 7 _ |a WOS:000672523300008
|2 WOS
037 _ _ |a FZJ-2021-00403
082 _ _ |a 570
100 1 _ |a Milos, Frano
|0 P:(DE-Juel1)169481
|b 0
245 _ _ |a Polymer Nanopillars Induce Increased Paxillin Adhesion Assembly and Promote Axon Growth in Primary Cortical Neurons
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715085689_30445
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The complexity of the extracellular matrix consists of micro‐ and nanoscale structures that influence neuronal development through contact guidance. Substrates with defined topographic cues mimic the complex extracellular environment and can improve the interface between cells and biomedical devices as well as potentially serve as tissue engineering scaffolds. This study investigates axon development and growth of primary cortical neurons on OrmoComp nanopillars of various dimensions. Neuronal somas and neurites form adhesions and F‐actin accumulations around the pillars indicating a close contact to the topography. In addition, higher pillars (400 nm) confine the growing neurites, resulting in greater neurite alignment to the topographical pattern compared to lower pillars (100 nm). A comprehensive analysis of growth cone dynamics during axon development shows that nanopillars induce earlier axon establishment and change the periodicity of growth cone dynamics by promoting elongation. This results in longer axons compared to the flat substrate. Finally, the increase in surface area available for growth cone coupling provided by nanopillar sidewalls is correlated with increased assembly of paxillin‐rich point contact adhesions and a reduction in actin retrograde flow rates allowing for accelerated and persistent neurite outgrowth.
536 _ _ |a 524 - Molecular and Cellular Information Processing (POF4-524)
|0 G:(DE-HGF)POF4-524
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Belu, Andreea
|0 P:(DE-Juel1)164336
|b 1
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 2
700 1 _ |a Maybeck, Vanessa
|0 P:(DE-Juel1)128705
|b 3
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 4
|e Corresponding author
773 _ _ |a 10.1002/adbi.202000248
|g p. 2000248 -
|0 PERI:(DE-600)3027224-5
|n 2
|p 2000248
|t Advanced biology
|v 5
|y 2021
|x 2366-7478
856 4 _ |u https://juser.fz-juelich.de/record/889790/files/adbi.202000248.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889790
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169481
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128713
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Engineering Cell Function
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV BIOL-GER : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21