000889800 001__ 889800
000889800 005__ 20240712101036.0
000889800 0247_ $$2doi$$a10.1021/acs.jpclett.0c01045
000889800 0247_ $$2Handle$$a2128/27621
000889800 0247_ $$2altmetric$$aaltmetric:81898314
000889800 0247_ $$2pmid$$a32357300
000889800 0247_ $$2WOS$$aWOS:000537432500069
000889800 037__ $$aFZJ-2021-00413
000889800 082__ $$a530
000889800 1001_ $$0P:(DE-Juel1)178087$$aCarlsson, Philip$$b0$$eCorresponding author$$ufzj
000889800 245__ $$aNeutral Sulfuric Acid–Water Clustering Rates: Bridging the Gap between Molecular Simulation and Experiment
000889800 260__ $$aWashington, DC$$bACS$$c2020
000889800 3367_ $$2DRIVER$$aarticle
000889800 3367_ $$2DataCite$$aOutput Types/Journal article
000889800 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618483515_643
000889800 3367_ $$2BibTeX$$aARTICLE
000889800 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889800 3367_ $$00$$2EndNote$$aJournal Article
000889800 520__ $$aThe role of sulfuric acid during atmospheric new particle formation is an ongoing topic of discussion. In this work, we provide quantitative experimental constraints for quantum chemically calculated evaporation rates for the smallest H2SO4–H2O clusters, characterizing the mechanism governing nucleation on a kinetic, single-molecule level. We compare experimental particle size distributions resulting from a highly supersaturated homogeneous H2SO4 gas phase with the results from kinetic simulations employing quantum chemically derived decomposition rates of electrically neutral H2SO4 molecular clusters up to the pentamer at a large range of relative humidities. By using high H2SO4 concentrations, we circumvent the uncertainties concerning contaminants and competing reactions present in studies at atmospheric conditions. We show good agreement between molecular simulation and experimental measurements and provide the first evaluation of theoretical predictions of the stabilization provided by water molecules.
000889800 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000889800 588__ $$aDataset connected to CrossRef
000889800 7001_ $$0P:(DE-HGF)0$$aCelik, Steven$$b1
000889800 7001_ $$0P:(DE-HGF)0$$aBecker, Daniel$$b2
000889800 7001_ $$0P:(DE-HGF)0$$aOlenius, Tinja$$b3
000889800 7001_ $$00000-0003-3736-4329$$aElm, Jonas$$b4
000889800 7001_ $$0P:(DE-HGF)0$$aZeuch, Thomas$$b5
000889800 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.0c01045$$gVol. 11, no. 10, p. 4239 - 4244$$n10$$p4239 - 4244$$tThe journal of physical chemistry letters$$v11$$x1948-7185$$y2020
000889800 8564_ $$uhttps://juser.fz-juelich.de/record/889800/files/WaterInfluence.pdf$$yPublished on 2020-05-11. Available in OpenAccess from 2021-05-11.
000889800 8564_ $$uhttps://juser.fz-juelich.de/record/889800/files/acs.jpclett.0c01045.pdf$$yRestricted
000889800 909CO $$ooai:juser.fz-juelich.de:889800$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000889800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178087$$aForschungszentrum Jülich$$b0$$kFZJ
000889800 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000889800 9132_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000889800 9141_ $$y2020
000889800 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000889800 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000889800 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889800 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2018$$d2020-09-03
000889800 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2018$$d2020-09-03
000889800 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000889800 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000889800 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000889800 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000889800 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000889800 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000889800 9801_ $$aFullTexts
000889800 980__ $$ajournal
000889800 980__ $$aVDB
000889800 980__ $$aUNRESTRICTED
000889800 980__ $$aI:(DE-Juel1)IEK-8-20101013
000889800 981__ $$aI:(DE-Juel1)ICE-3-20101013