000889819 001__ 889819
000889819 005__ 20240712113242.0
000889819 0247_ $$2doi$$a10.1007/s11242-021-01542-0
000889819 0247_ $$2ISSN$$a0169-3913
000889819 0247_ $$2ISSN$$a1573-1634
000889819 0247_ $$2Handle$$a2128/27761
000889819 0247_ $$2altmetric$$aaltmetric:104725113
000889819 0247_ $$2WOS$$aWOS:000609088000001
000889819 037__ $$aFZJ-2021-00432
000889819 082__ $$a530
000889819 1001_ $$0P:(DE-Juel1)5106$$aFroning, Dieter$$b0$$eCorresponding author$$ufzj
000889819 245__ $$aInhomogeneous distribution of polytetraflourethylene in gas diffusion layers of polymer electrolyte fuel cells
000889819 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2021
000889819 3367_ $$2DRIVER$$aarticle
000889819 3367_ $$2DataCite$$aOutput Types/Journal article
000889819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620387081_3363
000889819 3367_ $$2BibTeX$$aARTICLE
000889819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889819 3367_ $$00$$2EndNote$$aJournal Article
000889819 520__ $$aPolymer electrolyte fuel cells require gas diffusion layers that can efficiently distribute the feeding gases from the channel structure to the catalyst layer on both sides of the membrane. On the cathode side, these layers must also allow the transport of liquid product water in a counter flow direction from the catalyst layer to the air channels where it can be blown away by the air flow. In this study, two-phase transport in the fibrous structures of a gas diffusion layer was simulated using the lattice Boltzmann method. Liquid water transport is affected by the hydrophilic treatment of the fibers. Following the assumption that polytetrafluorethylene is preferably concentrated at the crossings of fibers, the impact of its spatial distribution is analyzed. Both homogeneous and inhomogeneous distribution is investigated. The concentration of polytetrafluorethylene in the upstream region is of advantage for the fast transport of liquid water through the gas diffusion layer. Special attention is given to the topmost fiber layer. Moreover, polytetrafluorethylene covering the fibers leads to large contact angles.
000889819 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000889819 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000889819 588__ $$aDataset connected to CrossRef
000889819 7001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b1$$ufzj
000889819 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b2$$ufzj
000889819 773__ $$0PERI:(DE-600)1473676-7$$a10.1007/s11242-021-01542-0$$p843-862$$tTransport in porous media$$v136$$x0169-3913$$y2021
000889819 8564_ $$uhttps://juser.fz-juelich.de/record/889819/files/Froning2021_Article_InhomogeneousDistributionOfPol.pdf$$yOpenAccess
000889819 8767_ $$d2021-01-20$$eHybrid-OA$$jDEAL$$lDEAL: Springer
000889819 909CO $$ooai:juser.fz-juelich.de:889819$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000889819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5106$$aForschungszentrum Jülich$$b0$$kFZJ
000889819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich$$b1$$kFZJ
000889819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b2$$kFZJ
000889819 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b2$$kRWTH
000889819 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000889819 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000889819 9141_ $$y2021
000889819 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-12
000889819 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000889819 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-12
000889819 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889819 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRANSPORT POROUS MED : 2018$$d2020-09-12
000889819 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-12
000889819 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-09-12$$wger
000889819 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-12
000889819 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-12
000889819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889819 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-12
000889819 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-12$$wger
000889819 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-12
000889819 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000889819 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000889819 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000889819 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000889819 920__ $$lyes
000889819 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000889819 9801_ $$aFullTexts
000889819 980__ $$ajournal
000889819 980__ $$aVDB
000889819 980__ $$aUNRESTRICTED
000889819 980__ $$aI:(DE-Juel1)IEK-14-20191129
000889819 980__ $$aAPC
000889819 981__ $$aI:(DE-Juel1)IET-4-20191129