001     889831
005     20240712113155.0
024 7 _ |a 10.1038/s43246-020-0014-5
|2 doi
024 7 _ |a 2128/27018
|2 Handle
024 7 _ |a altmetric:87079637
|2 altmetric
024 7 _ |a WOS:000610563400001
|2 WOS
037 _ _ |a FZJ-2021-00439
082 _ _ |a 600
100 1 _ |a Sun, Mengli
|0 P:(DE-Juel1)176750
|b 0
|u fzj
245 _ _ |a The +2 oxidation state of Cr incorporated into the crystal lattice of UO2
260 _ _ |a London
|c 2020
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648452093_4719
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Doping by Cr is used to improve the performance of uranium dioxide (UO2)-based nuclear fuel. However, the mechanism of structural incorporation of Cr remains unclear. Here, in order to understand this process on the atomic scale and the redox state of Cr in UO2-based nuclear fuel, we performed intensive ab initio atomistic simulations of the Cr doped UO2 matrix. We unexpectedly found that Cr in UO2 exists as Cr2+ species and not as the widely claimed Cr3+. We re-evaluated previously published x-ray absorption near edge structure spectroscopy data and confirmed the computed redox state of Cr. Thermodynamic consideration shows that the favorable structural arrangement of Cr in UO2 is given by a pair of associated Cr2+ and oxygen vacancy. The realism of this doping mechanism is further demonstrated by a match to the measured maximum Cr solubility and small lattice contraction.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |a Atomistic modeling of radionuclide-bearing materials for safe management of high level nuclear waste. (jiek61_20181101)
|0 G:(DE-Juel1)jiek61_20181101
|c jiek61_20181101
|f Atomistic modeling of radionuclide-bearing materials for safe management of high level nuclear waste.
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stackhouse, Joshua
|0 P:(DE-Juel1)178916
|b 1
700 1 _ |a Kowalski, Piotr M.
|0 P:(DE-Juel1)137024
|b 2
|e Corresponding author
773 _ _ |a 10.1038/s43246-020-0014-5
|g Vol. 1, no. 1, p. 13
|0 PERI:(DE-600)3008524-X
|n 1
|p 13
|t Communications materials
|v 1
|y 2020
|x 2662-4443
856 4 _ |u https://juser.fz-juelich.de/record/889831/files/s43246-020-0014-5-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889831
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176750
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)137024
913 1 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21