000889841 001__ 889841
000889841 005__ 20240712113153.0
000889841 0247_ $$2doi$$a10.1021/acsaem.0c00069
000889841 0247_ $$2Handle$$a2128/27120
000889841 0247_ $$2altmetric$$aaltmetric:90118130
000889841 0247_ $$2WOS$$aWOS:000543715100018
000889841 037__ $$aFZJ-2021-00449
000889841 082__ $$a540
000889841 1001_ $$0P:(DE-HGF)0$$aBuvat, Gaëtan$$b0
000889841 245__ $$aOER Performances of Cationic Substituted (100)-Oriented IrO 2 Thin Films: A Joint Experimental and Theoretical Study
000889841 260__ $$aWashington, DC$$bACS Publications$$c2020
000889841 3367_ $$2DRIVER$$aarticle
000889841 3367_ $$2DataCite$$aOutput Types/Journal article
000889841 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612536863_5943
000889841 3367_ $$2BibTeX$$aARTICLE
000889841 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889841 3367_ $$00$$2EndNote$$aJournal Article
000889841 520__ $$aCationic substitution was investigated as a strategy to increase the electrocatalytic activity of IrO2-based films for the oxygen evolution reaction (OER). For this purpose, an approach that combines detailed experimental characterization with quantum mechanical calculations based on density functional theory was employed. A series of (100)-oriented Ir1–xMxO2 thin films, with M = Ni, Cr, Mo, W, Sn, Pt, Rh, Ru, V, and Mn, was prepared with a one-step synthesis approach based on pulsed laser deposition, and the electrocatalytic activity of these films for the OER was measured. Matching material compositions and structures were generated in silico for DFT-based calculations of their electronic structure and OER pathway. A comparison of the experimental and theoretical results revealed the viable activity descriptor, paving the way for a systematic search to find the most active Ir-based OER catalyst.
000889841 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000889841 588__ $$aDataset connected to CrossRef
000889841 7001_ $$0P:(DE-Juel1)181059$$aEslamibidgoli, Mohammad J.$$b1$$ufzj
000889841 7001_ $$0P:(DE-HGF)0$$aGarbarino, Sébastien$$b2
000889841 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b3
000889841 7001_ $$00000-0001-5057-959X$$aGuay, Daniel$$b4$$eCorresponding author
000889841 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.0c00069$$gVol. 3, no. 6, p. 5229 - 5237$$n6$$p5229 - 5237$$tACS applied energy materials$$v3$$x2574-0962$$y2020
000889841 8564_ $$uhttps://juser.fz-juelich.de/record/889841/files/Revised_OER_%28100%29_oriented_IrMO2.pdf$$yPublished on 2020-05-06. Available in OpenAccess from 2021-05-06.
000889841 8564_ $$uhttps://juser.fz-juelich.de/record/889841/files/Revised_Sup_Info_OER_%28100%29_oriented_IrMO2.docx$$yPublished on 2020-05-06. Available in OpenAccess from 2021-05-06.
000889841 8564_ $$uhttps://juser.fz-juelich.de/record/889841/files/acsaem.0c00069.pdf$$yRestricted
000889841 909CO $$ooai:juser.fz-juelich.de:889841$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181059$$aForschungszentrum Jülich$$b1$$kFZJ
000889841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b3$$kFZJ
000889841 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000889841 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000889841 9141_ $$y2021
000889841 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000889841 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000889841 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-03
000889841 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889841 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000889841 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000889841 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000889841 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000889841 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000889841 920__ $$lyes
000889841 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000889841 9801_ $$aFullTexts
000889841 980__ $$ajournal
000889841 980__ $$aVDB
000889841 980__ $$aUNRESTRICTED
000889841 980__ $$aI:(DE-Juel1)IEK-13-20190226
000889841 981__ $$aI:(DE-Juel1)IET-3-20190226