000889842 001__ 889842
000889842 005__ 20240712113155.0
000889842 0247_ $$2doi$$a10.1021/acscatal.0c01785
000889842 0247_ $$2Handle$$a2128/27121
000889842 0247_ $$2altmetric$$aaltmetric:90124935
000889842 0247_ $$2WOS$$aWOS:000574920200041
000889842 037__ $$aFZJ-2021-00450
000889842 082__ $$a540
000889842 1001_ $$00000-0002-9771-8670$$aFan, Mengyang$$b0
000889842 245__ $$aUnderstanding the Improved Activity of Dendritic Sn 1 Pb 3 Alloy for the CO 2 Electrochemical Reduction: A Computational–Experimental Investigation
000889842 260__ $$aWashington, DC$$bACS$$c2020
000889842 3367_ $$2DRIVER$$aarticle
000889842 3367_ $$2DataCite$$aOutput Types/Journal article
000889842 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612537364_27834
000889842 3367_ $$2BibTeX$$aARTICLE
000889842 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889842 3367_ $$00$$2EndNote$$aJournal Article
000889842 520__ $$aAn alloy of Sn and Pb (Sn1Pb3) was prepared by electrodeposition at large negative current. The deposit is porous, with a honeycomb-like primary structure and a dendritic-like secondary structure. The onset potential for the electroreduction of CO2 is 80 mV lower on dendritic Sn1Pb3 as compared to dendritic Pb. The faradaic efficiency for formate formation is close to 100% in the potential range from −1.16 to −1.56 V vs. SHE. Density functional theory (DFT) computations were performed to uncover the origin of the decrease in the onset potential upon alloying Pb with Sn. Explicit treatment of water molecules in DFT calculations turns out as crucial to achieve an agreement with experimentally measured onset potentials.
000889842 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000889842 588__ $$aDataset connected to CrossRef
000889842 7001_ $$0P:(DE-Juel1)181059$$aEslamibidgoli, Mohammad J.$$b1$$ufzj
000889842 7001_ $$0P:(DE-Juel1)180589$$aZhu, Xinwei$$b2$$ufzj
000889842 7001_ $$0P:(DE-HGF)0$$aGarbarino, Sébastien$$b3
000889842 7001_ $$00000-0003-4657-781X$$aTavares, Ana C.$$b4
000889842 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b5
000889842 7001_ $$00000-0001-5057-959X$$aGuay, Daniel$$b6$$eCorresponding author
000889842 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.0c01785$$gVol. 10, no. 18, p. 10726 - 10734$$n18$$p10726 - 10734$$tACS catalysis$$v10$$x2155-5435$$y2020
000889842 8564_ $$uhttps://juser.fz-juelich.de/record/889842/files/FV_Marked_cs-2020-01785b_revised%20version_main_text.pdf$$yPublished on 2020-08-14. Available in OpenAccess from 2021-08-14.
000889842 8564_ $$uhttps://juser.fz-juelich.de/record/889842/files/FV_cs-2020-01785b_revised%20version_SI.docx$$yPublished on 2020-08-14. Available in OpenAccess from 2021-08-14.
000889842 8564_ $$uhttps://juser.fz-juelich.de/record/889842/files/acscatal.0c01785.pdf$$yRestricted
000889842 909CO $$ooai:juser.fz-juelich.de:889842$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181059$$aForschungszentrum Jülich$$b1$$kFZJ
000889842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180589$$aForschungszentrum Jülich$$b2$$kFZJ
000889842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b5$$kFZJ
000889842 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000889842 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000889842 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
000889842 9141_ $$y2021
000889842 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000889842 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000889842 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889842 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2018$$d2020-08-32
000889842 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000889842 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS CATAL : 2018$$d2020-08-32
000889842 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000889842 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-32
000889842 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000889842 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000889842 920__ $$lyes
000889842 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000889842 9801_ $$aFullTexts
000889842 980__ $$ajournal
000889842 980__ $$aVDB
000889842 980__ $$aUNRESTRICTED
000889842 980__ $$aI:(DE-Juel1)IEK-13-20190226
000889842 981__ $$aI:(DE-Juel1)IET-3-20190226