Hauptseite > Publikationsdatenbank > Understanding the Improved Activity of Dendritic Sn 1 Pb 3 Alloy for the CO 2 Electrochemical Reduction: A Computational–Experimental Investigation > print |
001 | 889842 | ||
005 | 20240712113155.0 | ||
024 | 7 | _ | |a 10.1021/acscatal.0c01785 |2 doi |
024 | 7 | _ | |a 2128/27121 |2 Handle |
024 | 7 | _ | |a altmetric:90124935 |2 altmetric |
024 | 7 | _ | |a WOS:000574920200041 |2 WOS |
037 | _ | _ | |a FZJ-2021-00450 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Fan, Mengyang |0 0000-0002-9771-8670 |b 0 |
245 | _ | _ | |a Understanding the Improved Activity of Dendritic Sn 1 Pb 3 Alloy for the CO 2 Electrochemical Reduction: A Computational–Experimental Investigation |
260 | _ | _ | |a Washington, DC |c 2020 |b ACS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1612537364_27834 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a An alloy of Sn and Pb (Sn1Pb3) was prepared by electrodeposition at large negative current. The deposit is porous, with a honeycomb-like primary structure and a dendritic-like secondary structure. The onset potential for the electroreduction of CO2 is 80 mV lower on dendritic Sn1Pb3 as compared to dendritic Pb. The faradaic efficiency for formate formation is close to 100% in the potential range from −1.16 to −1.56 V vs. SHE. Density functional theory (DFT) computations were performed to uncover the origin of the decrease in the onset potential upon alloying Pb with Sn. Explicit treatment of water molecules in DFT calculations turns out as crucial to achieve an agreement with experimentally measured onset potentials. |
536 | _ | _ | |a 113 - Methods and Concepts for Material Development (POF3-113) |0 G:(DE-HGF)POF3-113 |c POF3-113 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Eslamibidgoli, Mohammad J. |0 P:(DE-Juel1)181059 |b 1 |u fzj |
700 | 1 | _ | |a Zhu, Xinwei |0 P:(DE-Juel1)180589 |b 2 |u fzj |
700 | 1 | _ | |a Garbarino, Sébastien |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Tavares, Ana C. |0 0000-0003-4657-781X |b 4 |
700 | 1 | _ | |a Eikerling, Michael |0 P:(DE-Juel1)178034 |b 5 |
700 | 1 | _ | |a Guay, Daniel |0 0000-0001-5057-959X |b 6 |e Corresponding author |
773 | _ | _ | |a 10.1021/acscatal.0c01785 |g Vol. 10, no. 18, p. 10726 - 10734 |0 PERI:(DE-600)2584887-2 |n 18 |p 10726 - 10734 |t ACS catalysis |v 10 |y 2020 |x 2155-5435 |
856 | 4 | _ | |y Published on 2020-08-14. Available in OpenAccess from 2021-08-14. |u https://juser.fz-juelich.de/record/889842/files/FV_Marked_cs-2020-01785b_revised%20version_main_text.pdf |
856 | 4 | _ | |y Published on 2020-08-14. Available in OpenAccess from 2021-08-14. |u https://juser.fz-juelich.de/record/889842/files/FV_cs-2020-01785b_revised%20version_SI.docx |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/889842/files/acscatal.0c01785.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:889842 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)181059 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)180589 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)178034 |
913 | 0 | _ | |a DE-HGF |b Energie |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Methods and Concepts for Material Development |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1231 |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-32 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS CATAL : 2018 |d 2020-08-32 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-32 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b ACS CATAL : 2018 |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-32 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-13-20190226 |k IEK-13 |l IEK-13 |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-13-20190226 |
981 | _ | _ | |a I:(DE-Juel1)IET-3-20190226 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|