001     889842
005     20240712113155.0
024 7 _ |a 10.1021/acscatal.0c01785
|2 doi
024 7 _ |a 2128/27121
|2 Handle
024 7 _ |a altmetric:90124935
|2 altmetric
024 7 _ |a WOS:000574920200041
|2 WOS
037 _ _ |a FZJ-2021-00450
082 _ _ |a 540
100 1 _ |a Fan, Mengyang
|0 0000-0002-9771-8670
|b 0
245 _ _ |a Understanding the Improved Activity of Dendritic Sn 1 Pb 3 Alloy for the CO 2 Electrochemical Reduction: A Computational–Experimental Investigation
260 _ _ |a Washington, DC
|c 2020
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1612537364_27834
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An alloy of Sn and Pb (Sn1Pb3) was prepared by electrodeposition at large negative current. The deposit is porous, with a honeycomb-like primary structure and a dendritic-like secondary structure. The onset potential for the electroreduction of CO2 is 80 mV lower on dendritic Sn1Pb3 as compared to dendritic Pb. The faradaic efficiency for formate formation is close to 100% in the potential range from −1.16 to −1.56 V vs. SHE. Density functional theory (DFT) computations were performed to uncover the origin of the decrease in the onset potential upon alloying Pb with Sn. Explicit treatment of water molecules in DFT calculations turns out as crucial to achieve an agreement with experimentally measured onset potentials.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Eslamibidgoli, Mohammad J.
|0 P:(DE-Juel1)181059
|b 1
|u fzj
700 1 _ |a Zhu, Xinwei
|0 P:(DE-Juel1)180589
|b 2
|u fzj
700 1 _ |a Garbarino, Sébastien
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tavares, Ana C.
|0 0000-0003-4657-781X
|b 4
700 1 _ |a Eikerling, Michael
|0 P:(DE-Juel1)178034
|b 5
700 1 _ |a Guay, Daniel
|0 0000-0001-5057-959X
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acscatal.0c01785
|g Vol. 10, no. 18, p. 10726 - 10734
|0 PERI:(DE-600)2584887-2
|n 18
|p 10726 - 10734
|t ACS catalysis
|v 10
|y 2020
|x 2155-5435
856 4 _ |y Published on 2020-08-14. Available in OpenAccess from 2021-08-14.
|u https://juser.fz-juelich.de/record/889842/files/FV_Marked_cs-2020-01785b_revised%20version_main_text.pdf
856 4 _ |y Published on 2020-08-14. Available in OpenAccess from 2021-08-14.
|u https://juser.fz-juelich.de/record/889842/files/FV_cs-2020-01785b_revised%20version_SI.docx
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/889842/files/acscatal.0c01785.pdf
909 C O |o oai:juser.fz-juelich.de:889842
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)181059
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180589
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)178034
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-32
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CATAL : 2018
|d 2020-08-32
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS CATAL : 2018
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-32
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21