| Home > Publications database > TopSuite Web Server: A Meta-Suite for Deep-Learning-Based Protein Structure and Quality Prediction > print |
| 001 | 889849 | ||
| 005 | 20230815122843.0 | ||
| 024 | 7 | _ | |a 10.1021/acs.jcim.0c01202 |2 doi |
| 024 | 7 | _ | |a 0095-2338 |2 ISSN |
| 024 | 7 | _ | |a 1520-5142 |2 ISSN |
| 024 | 7 | _ | |a (BIS |2 ISSN |
| 024 | 7 | _ | |a 44.2004) |2 ISSN |
| 024 | 7 | _ | |a 1549-9596 |2 ISSN |
| 024 | 7 | _ | |a 1549-960X |2 ISSN |
| 024 | 7 | _ | |a 2128/27236 |2 Handle |
| 024 | 7 | _ | |a altmetric:98014319 |2 altmetric |
| 024 | 7 | _ | |a 33464891 |2 pmid |
| 024 | 7 | _ | |a WOS:000621663600002 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-00457 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Mulnaes, Daniel |0 0000-0003-2162-5918 |b 0 |
| 245 | _ | _ | |a TopSuite Web Server: A Meta-Suite for Deep-Learning-Based Protein Structure and Quality Prediction |
| 260 | _ | _ | |a Washington, DC |c 2021 |b American Chemical Society64160 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1641839366_21106 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Proteins carry out the most fundamental processes of life such as cellular metabolism, regulation, and communication. Understanding these processes at a molecular level requires knowledge of their three-dimensional structures. Experimental techniques such as X-ray crystallography, NMR spectroscopy, and cryogenic electron microscopy can resolve protein structures but are costly and time-consuming and do not work for all proteins. Computational protein structure prediction tries to overcome these problems by predicting the structure of a new protein using existing protein structures as a resource. Here we present TopSuite, a web server for protein model quality assessment (TopScore) and template-based protein structure prediction (TopModel). TopScore provides meta-predictions for global and residue-wise model quality estimation using deep neural networks. TopModel predicts protein structures using a top-down consensus approach to aid the template selection and subsequently uses TopScore to refine and assess the predicted structures. The TopSuite Web server is freely available at https://cpclab.uni-duesseldorf.de/topsuite/. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |x 0 |f POF IV |
| 536 | _ | _ | |a Forschergruppe Gohlke (hkf7_20200501) |0 G:(DE-Juel1)hkf7_20200501 |c hkf7_20200501 |x 1 |f Forschergruppe Gohlke |
| 536 | _ | _ | |a DFG project 267205415 - SFB 1208: Identität und Dynamik von Membransystemen - von Molekülen bis zu zellulären Funktionen |0 G:(GEPRIS)267205415 |c 267205415 |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Koenig, Filip |0 0000-0003-0852-440X |b 1 |
| 700 | 1 | _ | |a Gohlke, Holger |0 P:(DE-Juel1)172663 |b 2 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acs.jcim.0c01202 |g p. acs.jcim.0c01202 |0 PERI:(DE-600)1491237-5 |n 2 |p 548–553 |t Journal of chemical information and modeling |v 61 |y 2021 |x 1549-960X |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/889849/files/TopSuite_webserver_rev_final.pdf |y Published on 2021-01-19. Available in OpenAccess from 2022-01-19. |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/889849/files/acs.jcim.0c01202.pdf |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:889849 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172663 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Computational Science and Mathematical Methods |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-28 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM INF MODEL : 2018 |d 2020-08-28 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-28 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-08-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-28 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-08-28 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-28 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|