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Extreme high-field superconductivity in thin Re films
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We report the high-field superconducting properties of thin, disordered Re films via magnetotransport and
tunneling density of states measurements. Films with thicknesses in the range of 9 to 3 nm had normal-state
sheet resistances of ∼0.2 k� to ∼1 k� and corresponding transition temperatures in the range of 6 to 3 K.
Tunneling spectra were consistent with those of a moderate coupling BCS superconductor. Notwithstanding
these unremarkable superconducting properties, the films exhibited an extraordinarily high upper critical field.
We estimate their zero temperature Hc2 to be more than twice the Pauli limit. Indeed, in 6-nm samples the esti-
mated reduced critical field Hc2/Tc ∼ 5.6 T/K is among the highest reported for any elemental superconductor.
Although the sheet resistances of the films were well below the quantum resistance RQ = h/4e2, their Hc2’s
approached the theoretical upper limit of a strongly disordered superconductor for which kF � ∼ 1.

DOI: 10.1103/PhysRevB.103.024504

I. INTRODUCTION

Over the last two decades superconductivity research has
evolved along two separate but related paths. The first is
an extensive search and discovery effort aimed at identi-
fying and characterizing superconducting phases that have
novel order-parameter symmetries and/or nonphonon cou-
pling mechanisms. Recent examples include systems with
low to moderately high transition temperatures such as
Sr2RuO4 [1–3], CeCoIn5 [4,5], Nb2Pd0.81S5 [6], UTe2 [7], and
the Fe-based arsenides [8–10]. A second, although smaller,
segment of the research effort is focused on novel quantum
effects that can arise in BCS superconductors under certain
conditions. Examples include nonequilibrium dynamics in
Zeeman-limited superconductors [11,12], disorder and cor-
relation effects in thin-film systems [13–15], phase effects
in systems having nontrivial multiply connected geome-
tries[16–18], and, of course, quantum entanglement [19,20].
The results reported here fall into the latter category. We
present an experimental study of the extraordinary critical
field behavior of thin, disordered Re films. Notably, the films
exhibit reduced critical fields as high as Hc2/Tc ∼ 5.6 T/K,
which is more than an order of magnitude greater than what
is typical of elemental superconductors and, in fact, one of the
highest values reported for any superconductor. We discuss
the likely origins of the critical field enhancement and possible
applications for which a large Hc2 would be advantageous.

II. EXPERIMENTAL METHODS

Rhenium films were formed by e-beam deposition from Re
targets produced by arc-melting 99.9% Re powder to form
(2–3)-mm-diameter buttons. The depositions were made onto
fire-polished glass slides in a vacuum of P < 3 × 10−7 Torr

and a rate of ∼0.5 Å/s. In order to minimize island formation
in the films, the substrates were held at 84 K during the
deposition, thus the films were effectively quench condensed
onto the cryogenic substrates. Scanning electron micrographs
(SEM) of a 10-nm-thick Re film revealed relatively large
(∼100 nm) Re particles scattered on what appeared to be a
smooth, dense, amorphous Re base (see Fig. 1). We believe
these particles are the result of the “spitting” of Re droplets
from the e-beam hearth. Since their coverage is somewhat
sparse we do not believe that they had a significant impact on
the magnetotransport properties of the films. High-resolution
transmission electron microscopy (TEM) showed that the Re
base is, in fact, granular on length scales of a few nm (see
the next section). Planar tunnel junctions were formed by
first depositing a counterelectrode composed of a nonsuper-
conducting Al alloy onto a glass substrate and then exposing
the counterelectrode to atmosphere in order to produce a na-
tive oxide. A Re film was subsequently deposited so as to
have partial overlap with the counterelectrode with the alu-
minum oxide serving as the tunnel barrier. Magnetotransport
measurements were made using a Quantum Design Physical
Properties Measurement System having a maximum applied
field of 9 T and a base temperature of 400 mK. The tunneling
measurements were carried out using a standard 27-Hz 4-wire
lock-in amplifier technique.

III. FILM MICROSTRUCTURE

The microstructure of a 10-nm-thick Re film deposited
onto fire-polished glass at 84 K was studied via scanning
electron microscopy (SEM) and TEM. SEM analysis was per-
formed on a 6-nm-thick as-deposited Re film on fire-polished
glass. TEM analysis was performed on a 10-nm-thick film
that was mechanically transferred from fire-polished glass
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FIG. 1. Scanning electron micrograph of a 10-nm-thick Re film
deposited onto fire-polished glass at 84 K.

to a carbon-coated TEM Cu grid. TEM images, selected-
area electron diffraction (SAED) patterns, high-resolution
(HR) TEM images, and x-ray energy-dispersive spectroscopy
(EDS) spectra were recorded in a Hitachi H-9500 electron
microscope operating at 300 keV with a point resolution of
0.18 nm.

Figure 2(a) presents a TEM image of a 10-nm film. The
film has a random granular structure with nanograin sizes of
few nm in diameter. Figure 2(b) presents an EDS spectrum
of the film showing presence of Re peaks but no other ele-
mental peaks except for that of the Cu in the TEM grid. The
SAED pattern of the film exhibits diffused rings indicative of
a short-range crystalline order within the nanograins. Diffrac-
tion rings 1 and 2 in Fig. 2(c) have an average d spacing
(measured from the middle point of the ring) of 2.17 and

FIG. 2. (a) TEM image, (b) EDS spectrum, (c) SAED pattern,
and (d) HRTEM image of a 10-nm-thick Re film.

1.28 Å, respectively. We note that bulk Re has a hexagonal
structure with a = 2.76 Å and c = 4.458 Å (P63/mmc). The
(101)-Re plane has a d spacing of 2.11 Å, the (110)-Re plane
has a spacing of 1.38 Å, and the (103)-Re plane has a spacing
of 1.26 Å. Therefore, diffraction ring 1 can be identified as the
(101) plane of Re and the more diffuse ring 2 may correspond
to an overlap of the (110) and (103) planes of Re. Figure 2(d)
presents a HRTEM image of Re film in which the local ar-
rangement Re atoms are revealed within an individual grain.
A few characteristic crystallites having short-range order are
indicated by the marked regions.

IV. BACKGROUND

The quench-condensed Re films in this study are highly
disordered as evidenced by their sheet resistances and the
transmission electron micrographs. The effects of disorder
on two-dimensional (2D) BCS superconductivity have been
the subject of intense investigation for more than 30 years
now [13–16]. Early studies suggested that in homogeneously
disordered 2D systems the underlying repulsive Coulomb
correlations are enhanced by disorder [21]. This serves to
suppress the transition temperature, and at a relatively well-
defined critical level of disorder the superconducting phase
is lost. This disorder threshold is quantified by the quan-
tum resistance RQ = h/4e2 = 6.4 k�/sq, where h is Planck’s
constant and e is the electron charge. Relatively recent stud-
ies have revealed a more complex picture in which disorder
produces effects that arise from both single-electron and
many-body quantum processes. In terms of the complex su-
perconducting order parameter � = �0eiφ , the two limiting
pathways to the complete destruction of the superconducting
phase are the suppression of the amplitude �0 or suppression
of the phase stiffness φ [15]. In this study the sheet resistance
of the samples are well below RQ, so the superconducting
phase remains relatively robust although it is clear from Fig. 3
that Tc is somewhat suppressed in the thinner films. Likely,
samples with thicknesses substantially below 3 nm will have
sheet resistances near or above RQ and these will presumably
be at the threshold of a superconductor-insulator transition,
but these considerations are beyond the scope of this study.

In general, the critical field of a thin-film superconductor
has both an orbital and a Zeeman component. The lat-
ter originates from the Zeeman splitting of the conduction
electrons [22]. In most circumstances, however, the orbital
response of the superconductor dominates its critical field
behavior in the sense that the Zeeman critical field can be
an order of magnitude larger that its orbital counterpart. This
is particularly true in high spin-orbit (SO) scattering super-
conductors such as Nb and Pb due to the fact that even
relatively modest SO scattering rates can dramatically quench
the Zeeman response [23]. In the absence of SO scattering
one can realize a purely Zeeman-mediated, first-order critical
field transition [11] by applying a magnetic field parallel to
the surface of a thin-film superconductor. The corresponding
parallel critical field is given by the Clogston-Chandrasekhar
equation [24]

Hcp(0) =
√

2�0

gμB
, (1)
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FIG. 3. Sheet resistance as a function of temperature showing su-
perconducting transitions in a 2.5-nm- (diamonds), 3-nm- (triangles),
6-nm- (filled circles), and a 9-nm-thick (squares) Re film. The open
circles represent the superconducting transition of the 6-nm film in
the presence of a 9-T perpendicular magnetic field.

where �0 is the zero-temperature–zero-field gap energy, μB

is the Bohr magneton, and g ∼ 2 is the Landé g factor.
The critical field of Eq. (1) is known as the Pauli limit

and represents the upper limiting critical field of a low SO
superconductor. In practice, the film thickness d should be
smaller than the penetration depth d � λ in which case the
magnetic field fully penetrates the sample, and also smaller
than the coherence length d � ξ . Under these conditions the
Zeeman-limited critical field transition occurs near the Pauli
limit given by Eq. (1). In contrast, if the field is applied
perpendicularly to a thin superconducting film, an array of
quantized vortices is induced whose area density is roughly
proportional to the field strength. The perpendicular critical
field is reached when the vortex density approaches the point
where the vortex cores begin to overlap,

Hc2(0) = 	0

2πξ 2
, (2)

where 	0 is the flux quantum and ξ is the Pippard co-
herence length [25]. The films in this study were quench
condensed onto cold substrates and thus were highly disor-
dered. Consequently, their coherence length was a function
of the mean-free path �, ξ = √

ξ0�, where ξ0 is the BCS
coherence length. The latter can be expressed in terms of the
Fermi wave vector kF [25],

ξ0 = h̄2kF

πm�0
, (3)

where m � 2.1me is the effective mass estimated from band-
structure calculations (see [26] and Appendix A), and me the
bare electron mass. Combining Eqs. (2) and (3) we obtain an
expression for the perpendicular critical field in the strong-

disorder limit kF � → 1:

Hmax
c2 (0) = 	0m�0

2h̄2 . (4)

Equation (4) gives a rough estimate of the disordered-
enhanced, perpendicular critical field of a dirty superconduc-
tor. In practice, this upper limit in Re is about 28 T per meV of
gap. We note that this is somewhat larger than the Pauli critical
field, which is about 12 T per meV of gap; in fact, comparing
Eq. (1) with g = 2 to Eq. (4), we find Hmax

c2 = Hcpπm/2
√

2me.
Equations (1), (2), and (4) represent low-temperature crit-

ical fields T � Tc. Unfortunately, the critical fields of the
Re films in this study were well beyond the 9-T limit of
our measuring system. Nevertheless, reasonably accurate esti-
mates of the both Hc‖(0) and Hc2(0) can be extracted from the
temperature dependence of the respective critical fields near
Tc. We use the Werthamer-Helfand-Hohenberg formula [27]
to obtain the T = 0 orbital critical field

Hc2(0) = −0.693

(
dHc2

dT

)
Tc

× Tc. (5)

Similarly, the parallel critical field can be estimated via the
following (see Appendix B):

H2
c‖(0) = −0.693

(
dH2

c‖
dT

)
Tc

× Tc. (6)

Equation (6) accounts for both the Zeeman and orbital re-
sponses of the superconductor. Of course, the orbital response
of a thin film to parallel field is greatly suppressed if d � ξ ,
but it is not zero. The Zeeman response is independent of
geometry but is inhibited by SO scattering. As a consequence
of these effects, the measured Hc‖ can be more than an order
of magnitude greater than Hcp. Since the intrinsic SO scat-
tering rate is proportional to Z4 [23], where Z is the atomic
number of the element, all but the lightest elements (such
as Al and Be) have significant SO enhancements of Hc‖. As
we will show below, Re films in this study also exhibited
parallel critical fields well above Hcp due to their high intrinsic
SO scattering rate. An alternative explanation in terms of
the Rashba spin-orbit effect is also possible, as discussed in
Appendix B, but it does not modify our conclusions.

V. RESULTS AND DISCUSSION

Shown in Fig. 3 are the zero-field superconducting transi-
tions of a 2.5-, 3-, 6-, and 9-nm Re film. Note that the sheet
resistances of all films were well below the quantum resis-
tance RQ, indicating that, although the films were significantly
disordered, they were not near the superconductor-insulator
transition [15]. The transition temperatures in Fig. 3 are con-
siderably higher than those of bulk Re (Tc = 1.7 K), but it has
been known since the mid 1950s that Re has a compliant Tc

which can be nonperturbatively enhanced over its bulk value
by pressure, strain, and/or milling [28–31]. In this respect it is
not surprising that our films, which presumably have large lat-
eral strains by virtue of the deposition technique, also exhibit
enhanced Tc’s over the bulk value. However, the films are also
highly disordered, which presumably negatively impacts their
Tc’s. In the thickness range of this study d = 2 → 9 nm, the
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FIG. 4. Normalized tunneling conductance as a function of bias
voltage in the superconducting phase of a d = 6 nm Re film. The
coherence peaks are associated with a gap energy �0 ∼ 1 meV.

transition temperature increased approximately linearly with
d from Tc ≈ 3 → 6 K.

Shown in Fig. 4 are tunneling conductance spectra taken
on a d = 6 nm Re film. At low temperatures the tunneling
conductance G is proportional to the single-particle density of
states (DOS) [25]. The bias voltage is relative to the Fermi
energy, and the conductances have been normalized by the
conductance at 4 mV. The zero-field spectrum shows well-
defined coherence peaks associated with a gap energy �0 =
1.0 meV. The ratio of the gap energy to transition temper-
ature �0/kBTc ∼ 2.4 is moderately larger than the expected
BCS value of 1.76. A similar disorder-induced enhancement
of the coupling strength is also observed in disordered Al
films [32,33]. The nonzero conductance near V = 0 is par-
tially an artifact of the finite input impedance of the lock-in
amplifier, but, overall, the spectrum is consistent with that of
a disordered BCS superconductor. Note that the application
of a 9-T perpendicular field suppresses the coherence peaks
but does not completely extinguish the gap. Indeed, the ex-
cess zero-bias conductance of the perpendicular field trace is
associated with the cores of the induced vortices. The parallel
field spectra is little changed from its zero-field counterpart,
indicating that the film is too thin to accommodate vortices.

As is evident in the 6-nm data shown in Fig. 3, the dis-
ordered Re films have extraordinarily high critical fields,
although their zero-field superconducting characteristics seem
quite conventional. Note that a 9-T perpendicular field, which
is the upper limit of our system, shifted the transition temper-
ature of the 6-nm film by only 20%! In order to estimate the
T = 0 critical fields, we have employed Eqs. (5) and (6). This
was done by either measuring the critical field at temperatures
near Tc or by measuring the transition temperature in the
presence of a static applied field (see Appendix C). In either
case, the transition was defined by the temperature and field at
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FIG. 5. Perpendicular critical field as a function of reduced tem-
perature near Tc for several Re films of varying thickness. For
comparison, the inverted triangles represent the critical field (×10)
of a d = 4 nm Al film that was capped with 0.3 nm Au to induce
spin-orbit (SO) scattering. The solid lines are linear least-squares fits
to the data below 3 T. The values of (dHc2/dT )Tc are indicated in the
panel.

which the resistance reached 1
2 of its normal-state value. These

two methods gave equivalent results but sweeping temperature
in a constant magnetic field proved to be more expedient.

In Fig. 5 we plot Hc2 as a function of reduced temperature
near Tc. Note that the perpendicular critical field increases
linearly with decreasing temperature, suggesting that it is
dominated by the orbital contribution. The solid lines are a
linear least-squares fit to the data below 3 T, and their slopes
provide an indirect measure of Hc2(0) via Eq. (5). For the
6-nm Re film in Fig. 3 we get (dHc2/dT )Tc = 8.2 T/K. Using
Eq. (5) and neglecting the Zeeman response, we estimate
that Hc2(0) ≈ 27 T for this sample. This is quite close to
Hmax

c2 ≈ 28 T from Eq. (4), which implies that the films are
in the strong disorder limit of kF � ∼ 1.

The corresponding reduced critical field of the 6-nm film
is also very large h ≡ Hc2(0)/Tc ∼ 5.6 T/K. In fact, this is
among the highest reduced fields reported in the literature.
Typically, h < 1 in elemental films, for example: h ∼ 1 T/K
in highly disordered granular Pb films [34], h ∼ 0.15 in thin
amorphous Be films [35], and h ∼ 0.3 in ultrathin crystalline
Pb films [36]. For bulk systems, Chevrel-phase PbMo6S8 [37]
has Tc = 13.3 K and Hc2(0) ∼ 60 T, giving h = 4.5 T/K. We
note that the critical field slope near Tc of PbMo6S8 is 6.4 T/K
from which Eq. (5) predicts an extrapolated critical field of
59 T, in good agreement with the measured value. The Re film
reduced critical field is also comparable to the b-axis critical
field of the highly anisotropic chalcogenide Nb2Pd0.81S5 [6],
h = 5.6 T/K, but is not as large as that of the spin-triplet su-
perconductor UTe2 [7,38], h ∼ 20 T/K. All of these reduced
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FIG. 6. Parallel critical fields of the samples from Fig. 5 as a
function of reduced temperature. The solid lines are linear least-
squares fits to the data.

critical fields are, in fact, substantially larger than those of one
of the most important high-field superconductors Nb3Sn [39],
h = 1.7 T/K.

For comparison, we have included critical field measure-
ments in Fig. 5 of a 4-nm-thick Al film that was capped with
0.3 nm of Au to induce SO scattering [40]. The transition tem-
perature of the Al film was roughly half that of the 6-nm Re
film. The magnitude of the Al critical field Hc2(0) = 0.27 T is
typical of what is seen in thin elemental films. It is striking that
dHc2/dT of the Re film is 40 times larger than that of the Al
film in Fig. 5, but their respective sheet resistances only differ
by a factor 4. Since Hc2 scales as �0/� ∼ Tc/�, one would
expect the Al film critical field to be about 1

8 that of the Re film
when, in fact, they differ by a factor of 100. The corresponding
coherence lengths can be calculated from Eq. (2), and they dif-
fer by an order of magnitude: ξRe = 3.5 nm and ξAl = 35 nm.
Interestingly, the Re coherence length is comparable to the
scale of the structural granularity of the films as revealed by
TEM analysis.

We have also measured the parallel field response of the
films. In Fig. 6 we plot the square of the parallel critical field
as a function of reduced temperature near Tc. As suggested
by Eq. (6), H2

c‖ should be linear in temperature. The solid
lines in Fig. 6 represent least-squares fits to the data from
which we can obtain an estimate of Hc‖(0) as per Eq. (6).
The corresponding low-temperature parallel critical fields for
the Re 2.5-, Re 3-, Re 6-, and Al 4-nm films are estimated
to be 46.1, 31.5, and 14.4 T, respectively. Since the parallel
critical field is predominantly mediated by the spin response
of the system, � does not play as large a role as it does in
perpendicular field, and Hc‖ is primarily determined by �0

and the SO scattering rate. Interestingly, the three films have
reduced critical fields hc‖ = Hc‖/Tc ∼ 7–12 T/K, which are
significantly larger than the reduced field in the absence of
SO scattering, hcp ∼ 1.8 T/K. The parallel field behavior of

the Re films in Fig. 6 is very similar to that of the Al both
in temperature dependence and magnitude. But, there is a
profound difference in the ratio of the parallel critical field
to the perpendicular critical field of the two systems. For the
Re films Hc‖/Hc2 ∼ 1.2 to 2.7 but, in contrast, Hc‖/Hc2 ∼ 50
for the Al film.

The Tc enhancement in our quenched-condensed Re films
is similar in magnitude to what is seen in much thicker
electroplated Re films (∼30 nm) [30]. This suggests that the
nanomorphology or perhaps the strain-induced changes in
the bulk lattice constant play an important role in determin-
ing Tc [31]. Of course, the high perpendicular critical field
of the films may, in part, be explained by their disorder.
The band structure of bulk Re gives vF ∼ 8 × 105 m/s (see
Appendix A). Combining vF with the measured gap �0 =
1 meV points to a BCS coherence length ξ0 ∼ 170 nm. This,
in turn, implies that the mean-free path of the film would need
to be � = ξ 2/ξ0 ∼ 1 Å which is of the order of the interatomic
spacing. This seems to be an unreasonably short � since it
suggests that the films are deep in the Anderson localization
limit. However, they do not exhibit correlated insulator be-
havior [41] that is often associated with strong disorder. This
is perhaps due to the fact that the density of states of Re is
extraordinarily high, about twice that of Cu.

VI. SUMMARY

In summary, we report very large perpendicular critical
fields in Re films quenched condensed onto liquid-nitrogen-
cooled substrates. There continues to be a substantial interest
in liquid-helium temperature superconductors that can be
used in quantum information and computation technolo-
gies [42–44]. This is particularly true of thin-film supercon-
ductors that are easily deposited, resistant to oxidation, have
low resistivity, and/or are compatible with high magnetic
fields [45,46]. Rhenium offers a compelling alternative to
Al in devices such as superconducting resonators and mi-
crowave circuits [31,47]. Extending the present studies to
direct ultra-high-field measurements of the low-temperature
magnetotransport and tunneling density of states properties of
the films should prove enlightening.
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APPENDIX A: RHENIUM BAND STRUCTURE

The band structure of Re, shown in Fig. 7, was calculated
using the ab initio linear augmented plane-wave (LAPW)
method implemented in the WIEN2K software [48] using a
PBE functional [49] and included the spin-orbit interaction.
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FIG. 7. Relativistic energy bands of rhenium, including the ef-
fects of spin-orbit coupling.

Lattice constants were chosen as 5.211 and 8.404 bohrs (2.758
and 4.447 Å). The Re muffin-tin radius was chosen as 2.5
bohrs. In addition to the LAPW orbitals, an additional rela-
tivistic p3/2 orbital [50] at −3.08 Ryd below EF was added to
improve the basis set. The plane-wave cutoff was varied from
R*Gmax = 6 to 8 with no significant change observed in the
band structure. For integration over the Brillouin zone, grids
of 10 000 to 30 000 points were used. To calculate the Fermi
surfaces a 1003 grid was used.

The Fermi surfaces were very similar to those seen
in Mattheiss’ work [26]. A set of five sheets cross the
Fermi level. The density of states was found to be 0.66
states/eV/atom, similar to what Matthiess’ found. Assuming
two valence electrons per Re, the band effective mass is 2.1me.
The mean Fermi velocity was found on each sheet, and it
varied from 2.7 × 105 to 8.6 × 105 m/s among the sheets.
Using an expected gap �0 of 1.05 mV, that gives a typical
coherence length ξ0 = h̄vF /π�0 of 55 to 170 nm, depending
on the band.

APPENDIX B: ESTIMATING THE ZERO-TEMPERATURE
CRITICAL FIELD

1. Theoretical background

Generically, a second-order phase transition between su-
perconducting and normal states at temperature T < Tc takes
place when the strength of a pair-breaking mechanism reaches
a critical value. If the energy scale associated with such a
mechanism is denoted by α (which is proportional to the
pair-breaking rate), then the critical value is found in many

cases, but not all, by solving for α as a function of T using the
following equation (cf. Sec. 10.2 of Ref. [25]):

ln
T

Tc
= �

(
1

2

)
− �

(
1

2
+ α

2πkBT

)
, (B1)

where � is the digamma function. As T → Tc, we expect
α → 0 since at T = Tc the transition takes place in the ab-
sence of the additional pair-breaking mechanism, and by a
Taylor expansion of the right-hand side of Eq. (B1) we find

t = � ′
(

1

2

)
α(T )

2πkBTc
, (B2)

where � ′(1/2) = π2/2. Conversely, as T → 0 we can use the
identity �(1/2) = −2 ln 2 − γE , where γE � 0.577 is Euler’s
constant, and the asymptotic formula

�
(

1
2 + x

) � ln x + O(x−2) (B3)

to find

ln
α(0)

2πkBTc
= −2 ln 2 − γE . (B4)

Using the fact that the zero-temperature gap and the critical
temperature are related as �0 = πe−γE kBTc ≈ 1.76kBTc, we
can rewrite this equation as

α(0) = �0

2
. (B5)

Differentiating Eq. (B2) with respect to temperature and
comparing the result to Eq. (B4), we can relate the tem-
perature derivative of α near Tc to the value of α at zero
temperature:

α(0) = −π2

8
e−γE

dα

dT

∣∣∣∣
Tc

Tc, (B6)

where for the numerical coefficient we have π2e−γE /8 ≈
0.693.

The above approach is applicable to various pair-breaking
mechanisms. For the orbital effects of perpendicular and par-
allel magnetic fields of magnitude H applied to a disordered
film we have, respectively [25],

α⊥ = DeH , α‖ = D

6h̄
(eHd )2, (B7)

where D is the diffusion constant and d the film thickness.
Note that using the expression for α⊥ in Eq. (B5) we obtain
the familiar result

Hc2(0) = 	0

2πξ 2
(B8)

with 	0 = π h̄/e the magnetic flux quantum and ξ =√
h̄D/�0 the zero-temperature coherence length.
Generically, independent pair-breaking mechanisms can

be added together, similar to “Matthiessen’s rule” of adding
together scattering rates. In fact, one can in this way derive
Tinkham’s formula [25]

Hc(θ ) cos θ

Hc⊥(T )
+

[
Hc(θ ) sin θ

Hc‖(T )

]2

= 1 (B9)
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for the angular dependence of the critical field of a thin film,
where θ is the angle between field and normal to the film:
according to Eq. (B4), at any given temperature we have that
α⊥ + α‖ = DeHc(θ ) cos θ + D(ed )2[Hc(θ ) sin θ ]2/6h̄ is con-
stant, and that constant can be written as both DeHc⊥(T ) and
D(ed )2[Hc‖(T )]2/6h̄.

An important case in which the simple summation of pair-
breaking strengths is not valid arises when considering both
orbital effects and Zeeman splitting due to a magnetic field;
a full treatment for the case of parallel field including orbital
effect, Zeeman splitting, Fermi-liquid renormalization of the
spin susceptibility, and spin-orbit scattering can be found in
Ref. [51], while we can employ the results of Ref. [52] for
the perpendicular field case (see also Ref. [27]). Fortunately,
if spin-orbit scattering is sufficiently strong (in a way to be
specified below), then one can still use the “Matthiessen’s
rule” approach by modifying the pair-breaking energy α. For
parallel field, we have

α‖ = �0

(
c + 1

2b

)
h̃2, (B10)

where h̃ = μBH/�0 and parameters c and b account for or-
bital effect and spin-orbit scattering

c = D�0

6h̄

(
ed

μB

)2

, b = h̄

3�0τSO
, (B11)

where τSO is the spin-orbit scattering time.
For Eq. (B10) to be valid, we need b � h̃; in fact, Eq. (B10)

can be obtained by taking the large-b limit in the more general
formulas (valid for any values of c, b, and h̃) given in Ref. [51]
(we neglect the possible Fermi-liquid renormalization of the
spin susceptibility since in the regime studied here it can be
absorbed in a redefinition of b). Using Eq. (B10) in Eq. (B2)
we find that near the critical temperature H2

c‖ ∝ t . If c < 1/2b
and the film is very thin, then the parallel critical field is
limited by the Zeeman effect, but at a field well above the
Pauli limit. Interestingly, if a film is only moderately thin
(c > 1/2b), then the parallel critical field can be limited by the
orbital effect, but again at a field well above the Pauli limit.
Substituting Eq. (B10) into (B6), we obtain Eq. (6), which
is valid whether the parallel critical field is Zeeman limited
or orbital limited, so long as b � h̃. As an aside, we remind
that in the opposite case of negligible spin-orbit scattering, the
Zeeman splitting dominates over the orbital effect of the field
if c � 1, a condition that can be written also as d � ξ/kF �;
since away from the localized regime we have kF � � 1, the
condition becomes approximately d � ξ (we stress that this
condition is for the weak spin-orbit scattering case and thus it
is not relevant to the measurements reported in this work).

For perpendicular field, it was shown in Ref. [52] that for
b � h̃ we have

α⊥ = DeH + �0

2b
h̃2 = �0

2

[
H

Hc2(0)
+ h̃2

b

]
(B12)

with Hc2(0) of Eq. (B8). We see that in both parallel and per-
pendicular cases, the strong spin-orbit scattering adds the term
�0h̃2/2b to the original α. There is, however, a qualitative
difference in the two cases: while for parallel field the field
dependence of α‖ is quadratic in the field, for perpendicular

TABLE I. Summary of the experimentally determined quantities.
The gap for the 3-nm film has been estimated from that of the 6-nm
one assuming the same gap to critical temperature ratio for the two
films.

−dHc2/dT −dH2
c‖/dT

Tc (K) �0 (meV) (T/K) (T 2/K)

Re 6 nm 4.76 1.0 8.1 303
Re 3 nm 3.83 0.8 6.9 795

field there are both a linear term and a quadratic one. This puts
into question the validity of the relationship Hc⊥ ∝ t near Tc as
well as that of Eq. (5). Clearly, as b → ∞ we can neglect the
spin-orbit scattering suppressed Zeeman contribution to α⊥;
more precisely, that term can be dropped if DeH � �0h̃2/2b.
This condition can be written in the form

b �
(

μBHc2(0)

�0

)2 H

Hc2(0)
. (B13)

This condition should be compared with the assumption
b � h̃ = [μBHc2(0)/�0]H/Hc2(0) which needs to be satis-
fied for Eq. (B12) to be applicable. Now, we can distinguish
two cases: (1) If μBHc2(0)/�0 � 1, then when we can use
Eq. (B12), we can always neglect the last term in that equa-
tion; then from Eq. (B2) we find Hc⊥(T ) ∝ t near Tc and from
Eq. (B6) that Eq. (5) holds, and moreover Hc⊥(0) = Hc2(0) of
Eq. (B8). (2) If μBHc2(0)/�0 � 1, then one should in general
keep the last term in Eq. (B12), except sufficiently near Tc

where H → 0 and hence the condition (B13) is satisfied;
we can then estimate the temperature range over which this
happens by using Eq. (B2) to find

t � π2

8
e−γE

[
�0

μBHc2(0)

]2

b . (B14)

2. Application to the experimental data

The measurements reported in this work were performed
near the critical temperature, so for estimating the parameters
we will rely on Eq. (B2); the relevant experimental quantities
are reported in Table I. From the parallel field data, we can
extract the value of c + 1/2b [see Eq. (B10)]:

c + 1

2b
= − 4

π

kB�0

μ2
B

(
dH2

c‖
dT

)−1

. (B15)

We find 0.11 for the 6-nm Re film and 0.033 for the 3-nm one.
These estimates bound the values of the spin-orbit scattering
parameter b6 � 4.5 and b3 � 15, where we use a subscript to
indicate the film’s thickness.

For the perpendicular field data, let us assume that temper-
ature is sufficiently close to Tc that the condition in Eq. (B14)
is satisfied; we will check later for the consistency of our
assumption. Then, we can estimate the diffusion constant

D = − 4

π

kB

e

(
dHc2

dT

)−1

(B16)
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finding D6 � 0.14 cm2/s and D3 � 0.16 cm2/s; to these dif-
fusion constants correspond extremely short mean-free paths
(vF = 8 × 105 m/s) �6 � 0.05 nm and �3 � 0.06 nm.

Putting the diffusion constant together with the value of
�0, we arrive at estimates for the coherence length, ξ6 �
3.0 nm and ξ3 � 3.6 nm. Substituting these values of the co-
herence length in Eq. (B8) we find Hc2(0) � 36 and 25 T for
6- and 3-nm thickness, respectively. We can now use these
estimates together with the bounds on b to check if condi-
tion (B14) in fact holds; the lower bounds we find for the
right-hand side are 0.7 for 6 nm and 3.2 for 3 nm. Looking
at Fig. 5, we see that for both films if we limit the linear fit
to fields below 3 T, the temperature range in the experiment is
such that condition (B14) is satisfied, meaning we can neglect
the quadratic in field Zeeman contribution to α⊥ near Tc.

We note, however, that as T decreases towards 0 (t in-
creases to 1), for the 6-nm film the inequality (B14) stops
to hold. Nonetheless, let us assume that for both films we
can always neglect the quadratic film term in α⊥; then using
Eq. (B6), or equivalently Eq. (5), we obtain Hc2(0) � 27 and
18 T for 6 and 3 nm, respectively; the difference between
these estimates and the ones above originates from the gap
to critical temperature ratio deviating from the BCS value; in
Sec. V we reported these more conservative estimates.

So far we have neglected the effect at low temperatures of
the quadratic term; it can be included by calculating H⊥(0) as
the solution to the following equation [cf. Eq. (B12)]:

H

Hc2(0)
+ h̃2

b
= 1 (B17)

with Hc2(0) obtained as above by neglecting the quadratic
term. Here, we need the value of parameter b; it can be
found by calculating c from the definition in Eq. (B11), us-
ing the parameters estimated so far, and then getting b from
the known value of c + 1/2b. For the orbital parameter we
obtain c6 � 0.037 and c3 � 0.009, and hence b6 � 6.8 and
b3 � 20.6; note that in both cases spin-orbit scattering has a
bigger impact on the parallel critical field than the orbital part.
The solution to the above equation then gives H⊥(0) � 21 T
for 6 nm and H⊥(0) � 17 T for 3 nm. As expected, for the
thinner film the quadratic Zeeman term does not affect much
the estimated H⊥(0), due to the large spin-orbit scattering b
value, while for the thicker film with smaller b the Zeeman
effect suppresses H⊥(0) in comparison with Hc2(0).

3. On the validity of Tinkham’s formula and the
angle-dependent critical temperature

As noted already after Eq. (B12), the pair-breaking
strengths α in Eq. (B7) are modified by the same term
�0h̃2/2b for both parallel and perpendicular directions in the
presence of sufficiently strong spin-orbit scattering. This is
not surprising: since this term originates from the Zeeman
splitting, it does not depend on field direction. Taking this
observation into consideration, we deduce that for arbitrary
field orientation we have

α(θ ) = DeH cos θ + D

6h̄
[edH sin θ ]2 + �0

2b
h̃2. (B18)

FIG. 8. Dots: measured critical temperature Tc vs angle θ from
the film normal in a field of magnitude H = 9 T. Solid line: best-fit
line using α(θ ) of Eq. (B18) for the pair-breaking strength; dashed
line: using α(θ ) of Eq. (B20) (see text).

Since h̃2 = [h̃ sin θ ]2 + [h̃ cos θ ]2, it is straightforward to
show that when we can neglect the quadratic term in per-
pendicular field, then Tinkham’s formula is still valid. Based
on our previous discussion, we therefore expect that formula
to hold at temperatures close to Tc, while deviations can be
present at low temperatures if spin-orbit scattering is not very
strong.

By substituting Eq. (B18) into (B1), we can interpret the
resulting expression as an implicit equation for the critical
temperature T = Tc(θ ) as function of angle in a field of fixed
magnitude H . In Fig. 8 we show with dots the result of critical
temperature vs angle measurements. The line is a best fit for a
6-nm film where we set �0 = 2.4kBTc (cf. Sec. V), b = 6.8 ×
4.76 K/Tc [cf. Eq. (B11)], and treat the critical temperature
Tc and the diffusion constant D as free parameters. We find
that both Tc = 5.52 K and D = 0.16 cm2/s are higher than
the values estimated for the 6-nm film of Sec. V, indicating
that the film studied here is likely less disordered; indeed,
the higher Tc is qualitatively consistent with the expectation
that increasing disorder suppresses the critical temperature, as
mentioned at the beginning of Sec. V.

4. Rashba effect

In the discussion of Appendix B 1, the enhancement of the
parallel critical field above the Pauli limit was ascribed to
spin-orbit scattering. Interestingly, a similar enhancement can
be caused by a different spin-orbit effect, namely, a spin-orbit
coupling of the Rashba type. Such couplings can be present
in systems lacking inversion symmetry, in particular due to
the presence of interfaces, and break the spin degeneracy. The
Rashba coupling is linear in momentum and is characterized
by a velocity usually denoted with αR/h̄ (we use the sub-
script to avoid confusion with the pair-breaking energy α) or,
equivalently, by a coupling strength �SO = αRkF /h̄. Rashba
splitting has been observed in ultrathin lead films [53], so it
could play a role in our films too.

The effect of the Rahsba coupling on superconductors has
been the subject of a number of theoretical works (see [54] and

024504-8



EXTREME HIGH-FIELD SUPERCONDUCTIVITY IN THIN … PHYSICAL REVIEW B 103, 024504 (2021)

references therein). Here, we focus on the regime in which
spin-orbit coupling is weak compared to disorder but strong
compared to superconductivity,

h̄

τ
� �SO � �0; (B19)

these inequalities imply also that the superconductor is in the
disordered, as opposed to clean, regime. Under these condi-
tions the pair-breaking energy takes the form [54]

α(θ ) = DeH cos θ + D

6h̄
[edH sin θ ]2

+ �0

2bR
h̃2

(
sin2 θ + 1

2
cos2 θ

)
, (B20)

where

bR = τ�2
SO

2h̄�0
. (B21)

Comparing this formula to Eq. (B18) we see that the dif-
ference between Rahsba spin-orbit coupling and spin-orbit
scattering manifests itself via a different angular dependence
of the last term.

The considerations in Appendices B 1 and B 2 can be re-
peated with the simple replacements b → bR when examining
parallel field and b → 2bR in the perpendicular configura-
tion. Since the values for parameter b were estimated from
data near Tc where the contributions of spin-orbit effects to
the critical field can be neglected, we have bR,6 = b6 and
bR,3 = b3. The only modifications in our estimates take place
in the calculations of the spin-orbit suppression of the zero-
temperature perpendicular critical field H⊥(0) presented after
Eq. (B17), which now give 23 and 17.6 T for the 6- and 3-nm
film, respectively; note that the additional factor of 2 in the re-
placement for the perpendicular field case reduces the impact
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FIG. 9. Sheet resistance as a function of perpendicular magnetic
field at several temperatures near Tc for a 6-nm Re film. The horizon-
tal dashed line represents Rn/2 which defines the critical field.

of Rashba spin-orbit coupling on the perpendicular critical
field as compared to spin-orbit scattering. Moreover, using
Eq. (B21) we can estimate �SO,6 � 0.38 eV and �SO,3 �
0.54 eV, values that satisfy the conditions in Eq. (B19). Corre-
spondingly, we find αR,6 � 0.26 eVÅ and αR,3 � 0.37 eVÅ.
The finding αR,6 < αR,3 is qualitatively in agreement with
the expectation of stronger Rashba effect in thinner films.
The magnitude of the Rashba parameters seems reasonable:
while they are larger than what was found in lead films [53]
and some semiconductors, they are smaller than those found
in other semiconductors, metallic surfaces, and topological
insulators [55].

Finally, using Eq. (B20) we can repeat the fitting of the crit-
ical temperature vs angle data in Fig. 8, obtaining the dashed
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FIG. 10. Superconducting transitions of a 3-nm Re film in the
presence of a range of applied fields. Upper panel: sheet resistance
as a function of temperature with applied perpendicular fields of 0, 2,
3, 5, 7, and 9 T. Lower panel: superconducting transitions in applied
parallel fields of 0, 1, 2, 3, 5, 7, and 9 T.
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line with fit parameters Tc = 5.54 K and D = 0.17 cm2/s.
The fit is marginally better (smaller sum of squared residuals)
than that obtained using Eq. (B17). The analysis in this section
shows that the Rashba effect could be a viable explanation of
the spin-orbit enhancement of the parallel critical field in our
films; however, we cannot exclude spin-orbit scattering based
on our measurements.

APPENDIX C: CRITICAL FIELD TRANSITIONS

In order to estimate the T = 0 critical fields, we have
employed Eqs. (5) and (6). The equations require that we mea-

sure temperature dependence of the critical field near Tc. This
can be done by directly scanning the field at temperatures near
Tc or, alternatively, by measuring the transition temperature
in the presence of a static applied field. In either case, the
transition was defined by the temperature/field at which the
resistance reached 1

2 of its normal-state value Rn. These two
methods gave equivalent results but sweeping temperature in a
constant magnetic field proved to be more expedient. The first
method is illustrated in Fig. 9 where several isothermal critical
field transitions are measured at temperatures near Tc in a
6-nm Re film. The second method is represented by the data
in Fig. 10 where temperature is swept through the transition
in constant perpendicular and parallel magnetic fields.
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