E-CAM

European HPC Centre of Excellence

A Load-Balancing Library
For
Domain-Based
Parallel Particle Simulations

Rene Halver

Forschungszentrum Julich
Julich Supercomputing Centre

e

Funded by the EU (Project n°676531)

Overview

* Design Philosophy

* Domain Decomposition in Particle Codes and Load Imbalance
Issues

* Load-Balancing Strategies
* Load-Balancing Library
* Outlook

Funded by the EU (Project n°676531)

&
B

Definition of work

work

scalar parameter describing the work load on a single domain, e.g. this can be:
e execution time for a single routine or a collection of different routines

* number of particles

* number of interactions

within the library it is assumed that work is distributed uniformly across a volume,
l.e. the whole local domain or subsection of it, according to a uniform
work distribution density

s\
E

Funded by the EU (Project n°676531)

Design Philosophy

Basic ideas behind the design of the library:

* Add-on library, provides suggestion for better balanced domain
borders

* No fully automatic solution for communication, but provides new
neighbors for each domain

— due to different requirements the calling program is probably
better suited for

communication than a general library
* e.g. specialized data structures, domain structures, ...

* Providing different load-balancing solutions

&
=

Funded by the EU (Project n°676531)

Implemented Methods

Currently implemented methods of load balancing:
* Tensor-based
* Staggered grid
* Histogram-based
Currently worked on and partially implemented:
* Force-based

* Voronoi cell-based

Funded by the EU (Project n°676531)

&
=

% 9..4%;2

A

Library Requirements (Calling Code)

Some requirements for the use of the library, the calling program should be
able to deal with:

* shifting boundaries of domains (all methods)

* changing number of neighbors (all methods except tensor-based
and force-based)

* non-orthogonal domains (force-based / Voronoi-based)

&
B

Funded by the EU (Project n°676531)

Library Requirements (Technical)

There are also some requirements on external software:
* compiler with support for
- C++11
— Fortran 2003 (2008, if MPI module are to be used)
* CMake 3.14+
* MPI support
* VTK 7.1+ (for visualization)

* (optional) Doxygen, Sphinx and breathe for automated documentation
creation

* (optional) Boost (testing environment)

&
iz

Funded by the EU (Project n°676531)

Integration into Codes

* 4 Kk

Funded by the EU (Project n°676531)

provide work to library

compute
new geometry

return
suggested geometry

performed in:

" calling program

. library

e

Strategies for Library Usage

There are two ways how to decide if to call the library:

* given interval of time steps / execution time

define an interval after which the library is called, independent of
current state of work balance

* test load-balance quality

define a metric with which you describe the quality of load balance
and check if the load balance quality is below a given threshold, if
it is, run the library

Funded by the EU (Project n°676531)

&
B

Library Calls at Regular Intervals

advantages:
* does not require to check the quality of the load balance regularly
* provides a defined pattern of calls (e.g. once every X time steps)
disadvantage:

* calls the library even for already well balanced systems

— might lead to domain shifts and particle transfers that do not
decisively impact load balancing quality

Funded by the EU (Project n°676531)

&
B

Triggered Library Executions

advantages:

* only calls the library if required (especially useful for expensive
methods, like histogram-based)

disadvantage:

* requires regular (global) checks of load-balance quality

Funded by the EU (Project n°676531)

&
=

Improving Call Efficiency

current work in progress: a function that suggests, if the library should be
called / should compute new boundaries,
depending on previous calls / state of system

could be combined with regular intervals in which this function is called to
lessen the computational overhead for triggered call checks

&
iz

Funded by the EU (Project n°676531)

Library Input and Output

required input:
* local work
* |ocal boundaries / vertices

* MPI communicator (and process grid information, if not Cartesian
communicator)

provided output:

* suggested local boundaries suggested new domain
* updated list of local neighbors | d&composition

&
=

Funded by the EU (Project n°676531)

Other Details

* library is written in C++ and provides Fortran interface
* open source under BSD-3 license

* using Gitlab and Gitlab CI features

* released as version 0.9 (as of December 2020)

* library website:

http://slms.pages.jsc.fz-juelich.de/websites/all-website/

Funded by the EU (Project n°676531)

&
=

http://slms.pages.jsc.fz-juelich.de/websites/all-website/

Interfaces

C++ codes:
* library consists of headers — no linking required

* library provides a central class (ALL) that takes required
parameters and provides new domain boundaries

Fortran codes:
* Fortran 2003 based version, using derived types or function calls
* optional: support for Fortran 2008 MPI| module (mpi_f08)

&
=

Funded by the EU (Project n°676531)

Current State of the Library

the library currently provides:
* several functions to provide new domain geometry / topology

— new domain boundaries / vertices

— new domain neighbors
* output of domain geometry in VTK format for visualizations
* allows to maintain a minimum domain size

* small code examples to demonstrate the usage of the library

&
=

Funded by the EU (Project n°676531)

Outlook

Planned future developments include:

* new load-balancing methods, e.g. bisection-based
* automatized recognition of load-balance quality

— possible use to automate the determination if the library
should be called or not

* finalizing force- and Voronoi-based methods

* support for non-strict staggered Cartesian grids (which cannot be
described by ns- ny- n,)

&
=

Funded by the EU (Project n°676531)

	Title Slide
	Overview
	Definition of Work
	Design Philosophy
	Requirements
	Staggered-Grid (picture)
	Voronoi (picture)
	Code Requirements
	External Requirements
	Library Integration
	When to run the library?
	Running the libary in intervals
	Triggered Executions
	Automatically triggered executions
	Input / Output Parameters
	Library Details
	Code Interfacing
	Current State
	Outlook

