000889889 001__ 889889 000889889 005__ 20220930130304.0 000889889 0247_ $$2doi$$a10.1186/s12964-020-00689-5 000889889 0247_ $$2Handle$$a2128/26836 000889889 0247_ $$2altmetric$$aaltmetric:96808470 000889889 0247_ $$2pmid$$a33371897 000889889 0247_ $$2WOS$$aWOS:000603349100001 000889889 037__ $$aFZJ-2021-00497 000889889 041__ $$aEnglish 000889889 082__ $$a570 000889889 1001_ $$0P:(DE-Juel1)172046$$aSridhar, Krishna$$b0 000889889 245__ $$aCalcium mediated functional interplay between myocardial cells upon laser-induced single-cell injury: an in vitro study of cardiac cell death signaling mechanisms 000889889 260__ $$aLondon$$bBiomed Central$$c2020 000889889 3367_ $$2DRIVER$$aarticle 000889889 3367_ $$2DataCite$$aOutput Types/Journal article 000889889 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614335530_5948 000889889 3367_ $$2BibTeX$$aARTICLE 000889889 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000889889 3367_ $$00$$2EndNote$$aJournal Article 000889889 520__ $$aBackgroundThe electromechanical function of myocardial tissue depends on the intercellular communication between cardiomyocytes (CMs) as well as their crosstalk with other cell types. Cell injury, and subsequent death trigger inflammation as in myocardial infarction (MI) resulting in myocardial remodeling. Although mechanisms underlying myocardial cell death have been studied so far, the signaling events following single cell death and spontaneous response of connected cells in the myocardial tissue is still barely understood.MethodsHere, we investigated the effect of laser-induced single cell death on Calcium (Ca2+) concentrations and transport in myocardial cell clusters in vitro. Spatial and temporal changes in intracellular Ca2+ concentrations [Ca2+]i were studied using a fluorescent calcium indicator, Fluo-4AM. Spontaneous signaling events following cell death were studied in rat embryonic cardiomyocytes and non-myocytes using separate cell culture systems.ResultsCell death triggered spontaneous increase in intracellular Ca2+ levels ([Ca2+]i) of surrounding cells. The spread of the observed propagating Ca2+ signal was slow and sustained in myocytes while it was rapid and transient in fibroblasts (Fbs). Further, sustained high Ca2+ levels temporarily impaired the contractility in CMs. The cell-type specific effect of ablation was confirmed using separate cultures of CMs and Fbs. Comparing Ca2+ propagation speed in myocytes and fibroblasts, we argue for a diffusion-driven Ca2+ propagation in myocytes, but not in fibroblasts. Radial and sequential Ca2+ diffusion across the CMs through cell–cell contacts and presence of Cx43-based intercellular junctions indicated a gap junction flow of Ca2+.ConclusionsThese findings illustrate the spontaneous Ca2+-mediated functional interplay in myocardial cell clusters upon mechanical injury and, further, the difference in Ca2+ signaling in cardiomyocytes and fibroblasts. 000889889 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0 000889889 588__ $$aDataset connected to CrossRef 000889889 7001_ $$0P:(DE-Juel1)128815$$aHersch, Nils$$b1$$ufzj 000889889 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b2$$ufzj 000889889 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b3$$ufzj 000889889 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b4$$eCorresponding author 000889889 773__ $$0PERI:(DE-600)2126315-2$$a10.1186/s12964-020-00689-5$$gVol. 18, no. 1, p. 191$$n1$$p191$$tCell communication and signaling$$v18$$x1478-811X$$y2020 000889889 8564_ $$uhttps://juser.fz-juelich.de/record/889889/files/SN-2020-00398-b.pdf 000889889 8564_ $$uhttps://juser.fz-juelich.de/record/889889/files/s12964-020-00689-5.pdf$$yOpenAccess 000889889 8767_ $$8SN-2020-00398-b$$92021-02-23$$d2021-02-26$$eAPC$$jDEAL$$lDEAL: Springer$$zBelegnr. 1200164244 000889889 909CO $$ooai:juser.fz-juelich.de:889889$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery 000889889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172046$$aForschungszentrum Jülich$$b0$$kFZJ 000889889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128815$$aForschungszentrum Jülich$$b1$$kFZJ 000889889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b2$$kFZJ 000889889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b3$$kFZJ 000889889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b4$$kFZJ 000889889 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0 000889889 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000889889 9141_ $$y2020 000889889 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL COMMUN SIGNAL : 2018$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29 000889889 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000889889 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000889889 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL COMMUN SIGNAL : 2018$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-29 000889889 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29 000889889 920__ $$lyes 000889889 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x0 000889889 980__ $$ajournal 000889889 980__ $$aVDB 000889889 980__ $$aI:(DE-Juel1)IBI-2-20200312 000889889 980__ $$aAPC 000889889 980__ $$aUNRESTRICTED 000889889 9801_ $$aAPC 000889889 9801_ $$aFullTexts